HCCI* Modeling, Calibration and Analysis by Integrating GT-Power and Matlab-Simulink Capabilities

Dipl.-Ing. Axel Kiefer
Dr.-Ing. André Kulzer
Santosh Rao M.Sc.

Novel Combustion Engine Management
Corporate Research and Advance Engineering

October 08th 2007

* Also known as Controlled Auto Ignition (CAI)
Agenda

• HCCI Motivation
• Setup of a HCCI engine model in GT Power with EHVS and GDI
• Use of a Wiring Harness together with Matlab-Simulink®
• Integrated Arrhenius approach to predict combustion
• Validation of the simulation with measurements
• Summary
European GT-SUITE Conference 2007

→ **Principle**
 - Hot charge (air, fuel, residuals) is compressed
 - Near TDC hot spots start auto-ignition
 → volumetric reaction takes place

→ **Fast heat release with**
 - High efficiency (dethrottling)
 - Near zero NOx (no hot flame)
 - Low HC+CO (lean operation)

→ **Critical Issues:**
 - Lack of a ignition trigger (no direct initiator of combustion)
 - Limited operation map area (lean operation, press. grad., noise, low temp.)
 - Transient control of combustion and switch between two combustion modes

→ **GOALS**
 - Develop a system to understand & address these critical issues
 - Provide a setup for offline simulations which predicts the HCCI behaviour
Setup of HCCI engine model in GT Power with EHVS and GDI

1 Cyl. 450cc Research Engine with GDI & EHVS

- SOI Fuel mass
- Inlet Exhaust
- Engine Parameters e.g. rpm, bore, stroke
- Combustion Parameters e.g. Anchor Angle

Wiring Harness
Integrated Arrhenius approach to predict combustion

Arrhenius Integral

\[\int_{IVC} A e^{-\frac{E_a}{RT} \left[F \right]^a \left[O_2 \right]^b} = k \]

Vibe Function

\[x_b = 1 - e^{-a \left(\frac{\theta - \theta_0}{\Delta \theta} \right)^{m+1}} \]

- \(x_b \) → Mass fraction burnt
- \(\theta_0 \) → Crank angle at SOC
- \(\Delta \theta \) → Combustion duration
- \(m \) → Shape factor
Validation Process

High Order Reference Model for HCCI

1 Cyl., 450cc, Research engine
Experiments validated

Characteristic values of Experiments

- Speed
- Fuel Parameters
 - Split Inj.
 - SOI
The simulations show a very good accuracy & most important of all, a consistent tendency!
Summary

• HCCI Modeling and Simulation was realized with relatively few steps
• The **Wiring Harness** functionality was used extensively for Analysis which helped us
 • understand the basic principles of **HCCI combustion**, for e.g. the Start of Combustion, using the integrated Arrhenius approach
 • gain a deeper insight in studying various factors of influence
• Measurements at the test bench **confirm the results & reaffirm the need of 1-D Simulation Tools** for extensive use in the Automotive industry
HCCI Modeling, Calibration and Analysis by Integrating GT-Power & Matlab-Simulink Capabilities

Thank you for your time & attention

Dipl.-Ing. Axel Kiefer
Dr.-Ing. André Kulzer
Santosh Rao M.Sc.

Novel Combustion Engine Management
Corporate Research and Advance Engineering

October 08th 2007