Diesel hybrid for passenger cars: analysis of different degrees of hybridization

F. Millo, G. Mafrci, A. Federici (Politecnico di Torino)

V. Paladini, M. Cisternino (General Motors Powertrain Europe)
Presentation overview

• Introduction
• The vehicle model
• Vehicle model validation
• Use of simulation for the analysis of different degrees of hybridization
• Conclusions
INTRODUCTION (1/3)

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
Although in light duty applications all hybrid engine vehicles currently commercially available are based on gasoline internal combustion engines, hybridization of Diesel engines is believed to have a considerably higher potential in terms of fuel consumption reduction, due to the higher peak efficiency values of the diesel internal combustion engine as well as to the more favourable trend of engine efficiency vs. engine load. A wide penetration of hybrid diesel technologies could obviously be expected in the EU market, due to high fuel prices (making fuel savings more attractive), high diesel share and also to a different approach of the legislation to emission limits, not yet fuel neutral.
However, although diesel propulsion systems could undoubtedly add further benefits to HEVs and offer complementary advantages, such as for instance higher efficiencies in extra-urban driving conditions, the high values of efficiencies that can be already attained by conventional diesel vehicles may make more difficult to achieve further improvements in a cost effective way. Moreover the trade-off between fuel consumption saving potential and the emissions constraints must be carefully considered in the hybrid strategy to avoid unexpected penalties in terms of NOx emissions that could jeopardize diesel HEVs advantages.
The hybrids architectures analyzed in this work are based on a BAS (Belt Alternator Starter) system, which can be complemented with a second EM (Electric Motor) connected to the rear axis, thus enabling pure electric drive and e-AWD operation modes.
THE VEHICLE MODEL

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
VEHICLE MODEL VALIDATION

The model has been validated comparing the results of a simulation on an “hot” NEDC cycle with some available experimental data, referred to an European Sedan equipped with 2.0L Diesel engine and a standard driveline configuration.

Thus, the model has been set up so that the hybrid components were not active during the simulation.
• Introduction

• The vehicle model

• Vehicle model validation

• Use of simulation for the analysis of different degrees of hybridization

• Conclusions
NOx EMISSIONS

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
SOOT EMISSIONS

• Introduction
• The vehicle model
• Vehicle model validation
• Use of simulation for the analysis of different degrees of hybridization
• Conclusions
VEHICLE MODEL VALIDATION

% ERROR FOR FUEL CONSUMPTION, NOx AND SOOT EMISSIONS

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
USE OF SIMULATION FOR THE ANALYSIS OF DIFFERENT DEGREES OF HYBRIDIZATION

- Introduction
- The vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
START & STOP STRATEGY

- Introduction
- The vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
• Introduction

• The vehicle model

• Vehicle model validation

• Use of simulation for the analysis of different degrees of hybridization

• Conclusions
• Introduction

• The vehicle model

• Vehicle model validation

• Use of simulation for the analysis of different degrees of hybridisation

• Conclusions
• Introduction

• The vehicle model

• Vehicle model validation

• Use of simulation for the analysis of different degrees of hybridisation

• Conclusions

Fuel consumption savings S&S strategy

• 2.0 l ICE : 5%
• 1.3 l ICE : 3%
MILD HYBRID STRATEGY

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
• Introduction
• The vehicle model
• Vehicle model validation
• Use of simulation for the analysis of different degrees of hybridisation
• Conclusions
ENGINE AND EM TORQUE – ECE CYCLE

MILD HYBRID STRATEGY

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
CUMULATED FUEL CONSUMPTION

Fuel consumption savings (2.0 l ICE):
- S&S strategy: 4%
- Mild hybrid: 15%
EFFECT OF ENGINE DOWNSIZING

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions
ENGINE DOWNSIZING: PERFORMANCE

- Introduction
- The vehicle model
- Vehicle model validation
- Use of simulation for the analysis of different degrees of hybridization
- Conclusions

Tip in 1.3l - IV (40-100 km/h)

<table>
<thead>
<tr>
<th></th>
<th>[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE only</td>
<td>18</td>
</tr>
<tr>
<td>BAS 12kW</td>
<td>14</td>
</tr>
<tr>
<td>EM 30kW</td>
<td>10</td>
</tr>
<tr>
<td>Target</td>
<td>16</td>
</tr>
</tbody>
</table>
ENGINE DOWNSIZING: PERFORMANCE

STEADY STATE ANALYSIS

Introduction

The vehicle model

Vehicle model validation

Use of simulation for the analysis of different degrees of hybridisation

Conclusions
ENGINE DOWNSIZING: PERFORMANCE

TRANIENT ANALYSIS (THROUGH GTPOWER COUPLING)

• Introduction
• The vehicle model
• Vehicle model validation
• Use of simulation for the analysis of different degrees of hybridisation
• Conclusions

![Graph showing torque at wheels/reference torque vs. vehicle speed]
CONCLUSIONS

Simulations of different HEV architectures carried out through GT-Drive allowed the evaluation of the fuel consumption and NOx emissions reductions that could be achieved on NEDC.

Simulation results showed to be reliable as far as FC and NOx emissions are concerned, even when using maps obtained under steady state operating conditions. Further investigations will be carried out for more aggressive driving cycles (e.g. US06).

Coupled simulation with GTPower allowed the analysis of the impact on vehicle performance of engine downsizing coupled with electric boosting.
Diesel hybrid for passenger cars: analysis of different degrees of hybridization

F. Millo, G. Mafrci, A. Federici (Politecnico di Torino)

V. Paladini, M. Cisternino (General Motors Powertrain Europe)