Multivariate GT-Power Analysis

J.P. Downing, Cosworth Technology
4.10.4
Introduction

• Multivariate Technology
 – The study of functions involving more than one variable
 – Design of Experiments (DOE)
 – Response surface modelling
 – Multivariate data analysis

• Synergy with GT-Power simulation
 – Optimisation of gas exchange variables
 – Robustness testing
 – Estimation of unknown input data at the design stage

• Computer packages used by CT
 – Umetrics
 ß User friendly and simple
 – Matlab calibration toolbox
 ß Highly advanced functionality
Design of Experiments (1)

COST Sweep 1

COST Optimum
(Changing One Separate factor at a Time)

COST Optimum

Response Surface

Variable 2

Variable 1

Integrated Powertrain Solutions
Design of Experiments (2)

- Conventional optimisation / characterisation of responses
 - Changing one separate factor at a time (COST)
 - Doesn’t identify the correct optimum
 - Different location depending on starting point
 - No quantification of interactions
- Full factorial
 - Calculate all points in a grid
 - Shows correct optimum and interaction between variables
 - Large number of points
 - Especially with a large number of variables
 - No Points = Levels to the power of the number of factors, \(L^f \)
- Aim of design of experiments
 - Identify the minimum number of points to characterise the design space
 - Evaluate all variables together
 - Identify correct optimum
 - Quantify interactions
• Umetrics Modde DOE software
 – Gives DOE capability to the non-specialist
 - User friendly
 - Application based training
 – Inexpensive
 - Site wide license
 – Mainly limited to simple, classical experiments
 – Quadratic surface fits only
 – Some non-standard features
 - D-Optimal designs
 - Irregular domains
 - Qualitative factors
 - Alternative regression methods
 - Multiple linear regression
 - Partial least square
Umetrics Modde Example 1 (DOE)

- Valve event optimisation
- Four factors
- One response of IMEP
- Central composite face-centred design (CCF)

<table>
<thead>
<tr>
<th></th>
<th>Crank Degrees</th>
<th>230 to 250</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDUR</td>
<td>Crank Degrees</td>
<td>220 to 240</td>
</tr>
<tr>
<td>IMOP</td>
<td>Cam Degrees ATDCF</td>
<td>229.5 to 244.5</td>
</tr>
<tr>
<td>EMOP</td>
<td>Cam Degrees ATDCF</td>
<td>120.5 to 135.5</td>
</tr>
</tbody>
</table>
Umetrics Modde Example 1 (Results)

<table>
<thead>
<tr>
<th>Exp No</th>
<th>INDUR</th>
<th>EXDUR</th>
<th>IMOP</th>
<th>EMOP</th>
<th>IMEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230.0</td>
<td>220.0</td>
<td>229.5</td>
<td>120.5</td>
<td>12.77</td>
</tr>
<tr>
<td>2</td>
<td>250.0</td>
<td>220.0</td>
<td>229.5</td>
<td>120.5</td>
<td>13.05</td>
</tr>
<tr>
<td>3</td>
<td>230.0</td>
<td>240.0</td>
<td>229.5</td>
<td>120.5</td>
<td>13.40</td>
</tr>
<tr>
<td>4</td>
<td>250.0</td>
<td>240.0</td>
<td>244.5</td>
<td>120.5</td>
<td>13.67</td>
</tr>
<tr>
<td>5</td>
<td>230.0</td>
<td>220.0</td>
<td>244.5</td>
<td>120.5</td>
<td>13.34</td>
</tr>
<tr>
<td>6</td>
<td>250.0</td>
<td>220.0</td>
<td>244.5</td>
<td>120.5</td>
<td>13.08</td>
</tr>
<tr>
<td>7</td>
<td>230.0</td>
<td>240.0</td>
<td>244.5</td>
<td>120.5</td>
<td>13.79</td>
</tr>
<tr>
<td>8</td>
<td>250.0</td>
<td>240.0</td>
<td>244.5</td>
<td>120.5</td>
<td>13.60</td>
</tr>
<tr>
<td>9</td>
<td>230.0</td>
<td>220.0</td>
<td>229.5</td>
<td>135.5</td>
<td>13.34</td>
</tr>
<tr>
<td>10</td>
<td>250.0</td>
<td>220.0</td>
<td>229.5</td>
<td>135.5</td>
<td>13.51</td>
</tr>
<tr>
<td>11</td>
<td>230.0</td>
<td>240.0</td>
<td>229.5</td>
<td>135.5</td>
<td>13.49</td>
</tr>
<tr>
<td>12</td>
<td>250.0</td>
<td>240.0</td>
<td>229.5</td>
<td>135.5</td>
<td>13.74</td>
</tr>
<tr>
<td>13</td>
<td>230.0</td>
<td>220.0</td>
<td>244.5</td>
<td>135.5</td>
<td>13.26</td>
</tr>
<tr>
<td>14</td>
<td>250.0</td>
<td>220.0</td>
<td>244.5</td>
<td>135.5</td>
<td>13.20</td>
</tr>
<tr>
<td>15</td>
<td>230.0</td>
<td>240.0</td>
<td>244.5</td>
<td>135.5</td>
<td>13.27</td>
</tr>
<tr>
<td>16</td>
<td>250.0</td>
<td>240.0</td>
<td>244.5</td>
<td>135.5</td>
<td>13.23</td>
</tr>
<tr>
<td>17</td>
<td>230.0</td>
<td>230.0</td>
<td>237.0</td>
<td>128.0</td>
<td>14.04</td>
</tr>
<tr>
<td>18</td>
<td>250.0</td>
<td>230.0</td>
<td>237.0</td>
<td>128.0</td>
<td>14.14</td>
</tr>
<tr>
<td>19</td>
<td>240.0</td>
<td>220.0</td>
<td>237.0</td>
<td>128.0</td>
<td>14.02</td>
</tr>
<tr>
<td>20</td>
<td>240.0</td>
<td>240.0</td>
<td>237.0</td>
<td>128.0</td>
<td>14.13</td>
</tr>
<tr>
<td>21</td>
<td>240.0</td>
<td>230.0</td>
<td>229.5</td>
<td>128.0</td>
<td>13.84</td>
</tr>
<tr>
<td>22</td>
<td>240.0</td>
<td>230.0</td>
<td>244.5</td>
<td>128.0</td>
<td>13.72</td>
</tr>
<tr>
<td>23</td>
<td>240.0</td>
<td>230.0</td>
<td>237.0</td>
<td>120.5</td>
<td>13.82</td>
</tr>
<tr>
<td>24</td>
<td>240.0</td>
<td>230.0</td>
<td>237.0</td>
<td>135.5</td>
<td>13.81</td>
</tr>
<tr>
<td>25</td>
<td>240.0</td>
<td>230.0</td>
<td>237.0</td>
<td>128.0</td>
<td>14.14</td>
</tr>
</tbody>
</table>

INDUR, EXDUR, IMOP and EMOP set up in GT-Power as parameters.

Response IMEP predicted and copied into Modde.
IMEP = k1 + k2.INDUR + k3.EXDUR + k4.IMOP + k5.EMOP + k6.IMOP^2 + k7.EMOP^2 + k8.INDUR^2 + k9.EXDUR^2 + k10.INDUR.EXDUR + k11.INDUR.IMOP + k11.INDUR.EMOP + k12.EXDUR.IMOP + k13.EXDUR.EMOP + k14.IMOP.EMOP

Investigation: Valve_Event_DOE_2nd_Stage (MLR)
Scaled & Centered Coefficients for IMEP

N=25 R2=0.986 R2 Adj.=0.972
DF=12 Q2=0.936 RSD=1.7072 Conf. lev.=0.95
Umetrics Modde Example 1 (R^2 and Q^2)

Investigation: Valve_Event_DOE_2nd_Stage (MLR)
Summary of Fit

$R^2 = \text{Measure of fit, } Q^2 = \text{Measure of predictive ability}$
Umetrics Modde Example 1 (Fit vs Observed)

Investigation: Valve_Event_DOE_2nd_Stage (MLR)
IMEP

Observed vs Predicted chart showing the relationship between observed and predicted values for IMEP.
Umetrics Modde Example 1 (Comparison)

DOE Contour
Run time: 20min

Full Factorial for inlet and exhaust duration
GT-Power optimiser for IMOP and EMOP
Run time: 870min
• Volumetric efficiency targets were set at 6000, 4800 and 3600rpm
• Parameters available for tuning were:
 – Primary length
 – Runner inlet diameter
 – Plenum volume
• A three factor DOE was set up and run at each speed
 – IMOP optimised independently at each point
 ß GT-Power’s optimiser
• The maps of volumetric efficiency were studied to identify the best compromise solution
• All DOE’s gave good statistics – R^2, Q^2 95%+
• All DOE’s tested with sweeps through each range, varying length at constant diameter etc.
• 6000rpm DOE showed discrepancy with sweep
• Map of length and diameter at fixed plenum vol run to check
Inlet runner length vs. Inlet runner diameter

6000rpm
Umetrics Modde Example 2 (Modified Range)

- DOE specifies points at min, max and centre for each of the ranges, fits quadratic contour to these ranges.
- For 6000rpm, the trends are not accurately represented by a quadratic fit.
- DOE stats report very good fit, but only to the points it knows about.
- Not a problem for low speed results as original ranges correctly characterised the response.

- Model rerun for 6000rpm over limited length.
- Trend is now quadratic and therefore successfully fitted by Modde.
Umetrics Modde Example 2 (Results)

- Small plenum vol
- Med plenum vol
- Large plenum vol

6000rpm

4800rpm

3600rpm

Inlet Diameter

Primary Length

Shaded areas fail to meet performance
Matlab Model Based Calibration Toolbox

• MBC Toolbox
 – Highly advance functionality
 ß DOE options
 - Space-filling, D-optimal and classical strategies
 ß Response surface modelling
 - Polynomials, cubic spline, radial basis functions
 ß One or two-stage models
 – Expensive compared to Modde
 – Requires greater user capability to understand additional model complexity
• Three factor design
 – Exhaust primary length
 – Exhaust primary diameter
 – Cylinder bore
• Space filling design
 – Useful when there is little idea of the response shape
 – Spreads the points evenly throughout operating space
 ß Based on a set of rules for achieving regular spacing
 - Stratified Latin Hypercube
• Design evaluation
 – Predicted error variance <1
Matlab Example (Results)

GT-Power map

Matlab cubic spline surface fit
Two Stage Modelling

- Two stage modelling
 - Local DOE around each point of the global DOE
 - Cam timing optimisation
 - Local DOE:
 - IMOP, EMOP
 - Example Global DOE:
 - Exh primary and secondary lengths
 - Taguchi Robustness testing
 - Low variability with operating point
 - Local DOE:
 - Exhaust wall temperature and back pressure
 - Different on test bed and in vehicle
Multivariate data analysis

- Allows trends to be extracted from collections of data
- Principal component analysis identifies the qualitative relationship between variables
- Partial least square regression allows linear surface contours to be predicted
- The application allows improved estimates for GT-Power inputs

Example: characterisation of test bed CAI combustion data
(Responses 50% BP and 10 to 90 Duration, factors inlet and exhaust cam position)
Summary

- Multivariate technology allows the effect of many variables on a response to be assessed simultaneously
- Classical DOE designs with quadratic surface fits can significantly speed up the optimisation process
 - Suitable for use by the non-specialist
 - Ranges must be carefully selected to ensure the trends do not become cubic
- Advanced DOE software and greater expertise is required for:
 - Multiple dips and valleys within the design space
 - Radial basis functions, cubic splines
 - Assessing design spaces where little or no information regarding the effects of factors on the responses
 - Space filling designs
- Two stage modelling is beneficial for cam timing optimisations and robustness testing
- Multivariate data analysis is beneficial for extrapolating GT-Power inputs from a collection of test data