TRANSIENT MODELING
USING MEAN VALUE
ENGINE CYLINDER

Gamma Technologies and
J. Lennblad and S. Tabar – Volvo Cars

All information contained in this document is confidential and cannot be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Gamma Technologies, Inc.
Overview

• Introduction to Mean Value Modeling
• Theory of Mean Value Modeling
• Recommended Methodology
• Comparisons with Detailed Engine Models
Intro to Mean Value Models

• Simplified engine cylinder: maps define air flow and distribution of fuel energy
 – No combustion or breathing process modeled
 – Faster computations than ‘EngCylinder’
 – Multiple cylinders combined into 1 mean value cylinder

• Modified Flow system
 – Parts combined into larger volumes
 – Further improves simulation time
 – Essentially “filling-emptying” models

• Useful when computation speed and “bulk flow” are important
 – Engine control system design
 – Transient vehicle simulations
Mean Value Cylinder: Theory

- ‘EngCylMeanV’ defined by three maps
- Volumetric Efficiency
 - Air mass flow rate imposed at inlet and outlet of cylinder
- Indicated Efficiency
 - Percent of total fuel energy converted into work
- Exhaust Energy Fraction
 - Percent of total fuel energy converted into exhaust energy
 - All remaining fuel energy assumed lost to heat transfer
- Maps can be traditional or use Neural Network & controls
Mean Value Engine: Flow System

- Intake and Exhaust Manifolds represented by single flowsplit
- Details of flow are in map of VE
- Remaining pipes have longer DX
Recommended Methodology

- Select Independent Variables
 - Engineer must know important variables that affect engine and will be studied (RPM, load, manifold conditions, valve timing, etc.)

- Prepare model to run Sweeps
 - Remove TC, if applicable
 - Make independent variables parameters

- Run Sweeps
 - use DOE Setup
 - Distributed processing

- Create Neural Networks and Maps
 - New Neural Network training tool in GT-SUITE

- Build Model
Neural Networks & Mean Value Cylinder

- Lookup tables are OK if variable is function of 1 or 2 RLT variables
- Defining more complex relationships requires the use of controls (dependence on 3 or more variables)
- Mean Value Cylinder require more than 2 inputs
- Neural Networks can be trained to control the mean value cylinder with complex dependencies
 - Faster than simple lookups, typically
 - Can fit data better than linear interpolation
 - Can interpolate 3 or more input values better than lookups
Neural Network

- “Black box”
- “Neurons” work in parallel
- “Taught” to produce output with inputs
- Best fit – not exact
- Neurons placed in domain of input data
- Each neuron assigned math operations
- Output from all neurons is combined to form output
Comparison with Detailed Models

- Naturally aspirated, 6-cylinder, SI engine
 - VVT
 - Wide open throttle test
 - Constant speed throttle test
 - Model provided courtesy of Volvo Cars
- Turbocharged, 4-cylinder, 2.0L, DI engine
 - Steady State comparison
 - Transient comparison
 - Coupled engine-vehicle comparison
 - Made from example ‘injmap’
Naturally Aspirated, SI-Engine

- Wide open throttle test

2500 RPM Step Test - Ambient Temperature = 15°C

Detailed

Mean Value

Normalized Brake Torque

Time [sec]
Naturally Aspirated, SI-Engine

- Constant Speed Throttle Step Test

WOT Brake Torque - Ambient Temperature = 15°C
Turbocharged, DI Engine

- Indicated torque at steady state for different loads

![Graph of Indicated Torque, Steady State](image-url)
Turbocharged, DI Engine

- Steady state turbocharger speed

![Graph showing turbocharger speed vs. engine speed for different conditions and models.](image)
Comparision of indicated torque during a transient
Turbocharged, DI Engine

- Virtual Vehicle Simulation – Imposed Vehicle Speed

![Vehicle Speed Graph](image-url)
Turbocharged, DI Engine

- Predicted Brake Power

Brake Power (kW), Part engine

- Detailed
- Mean Value

Brake Power [kW]

Time [sec]

0.0 12.0 24.0 35.9 47.9 59.9
Turbocharged, DI Engine

- Comparison of Predicted BSFC