Knock Analysis and Prediction: Application to Motorcycle Engines

Tomiyuki Sasaki
Honda R&D Co., Ltd. Motorcycle R&D Center

Mike Bybee and Santhosh Gundlapally
Gamma Technologies, Inc.

GT-Suite Conference 2012
Contents

1. Background
2. Knock Analysis
3. Knock Prediction
3. Application to Engine Model
4. New Knock Correlation
5. Conclusion
Contents

1. Background

2. Knock Analysis

3. Knock Prediction

4. Application to Engine Model

5. New Knock Correlation

6. Conclusion
Characteristics of Motorcycles Engine

- Small engine displacement
- High engine speed
- Wide valve overlap
- Rich combustion
- Air or water cooled

Motorcycle

Automobile
Goal

To predict the knock-limited spark timing of motorcycle engines within GT-Power with sufficient accuracy for use in the engine development cycle.
Test Engine Specifications

<table>
<thead>
<tr>
<th></th>
<th>Engine 1</th>
<th>Engine 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine type</td>
<td>single cylinder</td>
<td>single cylinder</td>
</tr>
<tr>
<td>Cooling type</td>
<td>Air cooled</td>
<td>Water cooled</td>
</tr>
<tr>
<td>Bore × Stroke (mm)</td>
<td>50.0 × 55.6</td>
<td>76.0 × 55.0</td>
</tr>
<tr>
<td>Displacement (cm³)</td>
<td>109</td>
<td>249</td>
</tr>
<tr>
<td>Valve layout</td>
<td>1 intake, 1 exhaust</td>
<td>2 intake, 2 exhaust</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>9.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>Hemispherical type</td>
<td>Pent roof type</td>
</tr>
</tbody>
</table>
Contents

1. Background
2. Knock Analysis
3. Knock Prediction
4. Application to Engine Model
5. New Knock Correlation
6. Conclusion
Multi-Cycle Three Pressure Analysis

- Pressure Analysis of consecutive cycles

Engine 2: 249cc water cooled engine
Knock Analysis

Theoretical knock frequencies:

\[f = \frac{c \alpha_{m,n}}{\pi B} \]

- \(a_{1,0} \)
- \(a_{2,0} \)
Gamma Technologies

Knock Analysis

Fourier Analysis

Theoretical knock frequencies:

\[f = \frac{c \alpha_{m,n}}{\pi B} \]
Knock Analysis

Theoretical knock frequencies:

\[f = \frac{c \alpha_m}{\pi B} \]

Knock Strength:
Maximum Amplitude of Pressure Oscillation (MAPO)
Contents

1. Background
2. Knock Analysis
3. Knock Prediction
4. Application to Engine Model
5. New Knock Correlation
6. Conclusion
Empirical correlation of ignition delay

\[\tau = A p^{-n} \exp\left(\frac{B}{T} \right) \]

Autoignition criteria

\[\int_{t=0}^{t_a} \frac{d \tau}{\tau} = 1 \]

Available correlations

- **Douaud & Eyzat** (SAE Paper 780080)
Douaud & Eyzat predicts knock onset well for individual cycles, within the range of measurement and analysis error.
Full Engine Models

- Calibrated for performance prediction for usual production development
- Measured wall temperatures
- SITurb combustion model
 - Single set of constants for each engine
 - Good overall performance prediction, larger error at lower loads
Knock Model Calibration

- **Goal:** Predict the knock-limited spark advance (KLSA)
- **Measurement**
 - KLSA determined on the test bench
- **Prediction**
 - KLSA determined in the full engine model
- **Douaud & Eyzat**
 - Calibrated with Knock Induction Time Multiplier
 - Knock boundary defined by Knock Index = 0
Knock-Limited Spark Advance: Engine 1

W.O.T.

Throttle 65%

Throttle 42%

good correlation with the measured data
Knock-Limited Spark Advance: Engine 2

W.O.T.

Throttle 78%

Throttle 52%

Throttle 33%
Douaud & Eyzat Results

• Application of D&E knock model to test engines is able to predict the knock-limited spark advance with sufficient accuracy for use in the engine development cycle

• However, this application has low residual content and nearly constant air/fuel ratio

• For other applications, need improved knock correlation that takes into account larger residual content, varying air/fuel ratio, and fuel effects
Contents

1. Background
2. Knock Analysis
3. Knock Prediction
4. Application to Engine Model
5. New Knock Correlation
6. Conclusion
New Knock Correlation (V7.3)

- Based on detailed kinetics simulations – MultiChem kinetics mechanism (113 species and 487 reactions)
- Valid over a wide temperature range
- Negative temperature coefficient (NTC) behavior
 - Effect of Air-Fuel ratio
 - Effect of EGR
 - Fuel effects

NTC behavior depends mainly on the

- Fuel
- Air-Fuel ratio
- Pressure
New Knock Correlation (V7.3)

\[\tau_i = a_i \left(\frac{ON}{100} \right)^{b_i} [Fuel]^{c_i} [O_2]^{d_i} [Diluent]^{e_i} \exp \left(\frac{F_i}{T} \right) \quad i = 1, 2, \text{and } 3 \]

ON is the fuel octane number

[Fuel], [O2], and [Diluent] are the concentration expressed in mol/m3

[Diluent] is the sum of N2, CO2, and H2O concentrations

\[\frac{1}{\tau} = \frac{1}{\tau_1 + \tau_2} + \frac{1}{\tau_3} \]

Yates, Andy D. B. et al., SAE 2005-01-2083
New Correlation vs Kinetics Predictions

Effect of Pressure

Effect of Octane Number

Effect of Air-Fuel ratio

Effect of EGR
New Correlation vs. Experiment

- New Correlation-2500RPM 100% Throttle
- D&E

- New Correlation-2500RPM 21% Throttle EGR
- D&E
New Correlation vs. Experiment

1. New Correlation-2500RPM 100% Throttle vs. D&E
2. New Correlation-2500RPM 21% Throttle EGR vs. D&E

Douaud & Eyzat captures average effect
New Correlation – EGR Sweep

Knock Limited Spark Advance

- 1500 RPM
- 2000 RPM
- 2500 RPM

KLSA - KLSA(eg=0)

EGR%

Contents

1. Background
2. Knock Analysis
3. Knock Prediction
4. Application to Engine Model
5. New Knock Correlation
6. Conclusion
Conclusion

- GT-Suite tools provide convenient capability to perform pressure analysis of consecutive cycles and/or average cycle
 - Burn rate
 - Knock onset and strength

- Existing knock correlations
 - Douaud & Eyzat model can predict knock onset for individual and average cycle for cases of low residuals and constant air-fuel ratio despite NTC behavior
 - Application of Douaud & Eyzat model to 2 motorcycle engines showed good predictive capability for identifying knock-limited spark advance

- New knock correlation
 - Accurate over full engine operating temperature range
 - Built-in sensitivity for EGR and air-fuel ratio
 - Applicable to varying fuel characteristics such as octane number and composition