Coupled Engine/Cooling System Simulation and its Application to Engine Warm-up

GT-POWER & GT-COOL
Application of boundary conditions

Application of boundary conditions, and engine performance simultaneously effect cooling system, oil

Allows cylinder wall heat transfer to

Component finite element interface

GT-POWER and GT-Cool link at cylinder

What Is Coupling?
Why Use Coupling?

• Study interactions due to engine/cooling system interfaces
 - cylinder structure
 - oil cooler
 - mechanical pump
 - mechanical fan
 - EGR cooler
 - charge-air-cooler
 - etc.

• Evaluate cooling system control strategies

• Study engine warm-up
 - after treatment devices
 - engine performance

• Vehicle test cycle analysis
One-way Coupling

- GT-POWER and GT-COOL models run separately
- GT-COOL uses gas side boundary conditions obtained from a previously run GT-POWER simulation
- In cylinder FE component temperatures solved in GT-POWER and again in GT-COOL
New Objects in GT-COOL

- Engine Cylinder Structural Conduction Object
- Generalization of EngCylITwallISolution
 - Variable resolution 3-D cylinder model added
 - Ports (intake/exhaust) have been added to the solution
- Automated generation of in-cylinder component FE models (just like before in ‘EngCylITWallSoln’)
- Has pre-defined multiple ports, through which other thermal primitives can be attached (ThermalPipe, ThermalMass, etc.)

- Engine Cylinder Gas Boundary Conditions Object
- Obtains Gas Boundary Conditions from previously run GT-POWER simulation or from user input
Application to Engine Warm-up in cooperation with DAF Trucks
Application Details

- **DAF Trucks 6 cylinder 12.9L turbocharged diesel modeled in GT-Power**
- Cooling system with 1-D approximations to engine block and head coolant passages (calibrated with 3-D CFD)
- **Strategy:** Accelerate cylinder structure warm-up by increasing exhaust back pressure

Engine block and head coolant passages for one cylinder
Model Setup

- Simulate engine in GT-POWER over full range of speeds and loads for conventional and increased back pressure cases
- Simulate cooling system in GT-COOL through 60 second cold start transient while referencing engine gas boundary conditions
Gas Side Cylinder Results (I)

- Temperatures spatially averaged over three zones
- Accelerated warm-up in each zone with increased back pressure

~ 11.0 Kelvin difference at end of idle condition
Gas Side Cylinder Results (II)

- Gas side cylinder wall surface temperature at time = 25 seconds
- Higher overall temperature with increased back pressure
Coolant Side Cylinder Results

Coolant water jacket spatially averaged surface temperature

Coolant side cylinder wall surface temperature at time = 25 seconds

~ 8.0 Kelvin difference at end of idle condition
Piston and Head Results

Piston temperature cross-section at time = 25 seconds

Gas side head surface temperature at time = 25 seconds
Coolant Results

- Engine outlet coolant (water) temperature is ~ 1 Kelvin higher at end of idle condition
Study Conclusions

• Increasing exhaust back pressure will accelerate cylinder structure warm-up

• The strategy is most effective at idle conditions
Fully-Coupled

- Fully integrated tool that encompasses the two systems: Cooling System + Engine System
- Gas Side and coolant boundary conditions obtained from same simulation
- Cylinder connects directly to structural conduction object
- Captures interactions between systems