A MODEL BASED APPROACH TO EXHAUST HEAT RECOVERY USING THERMOELECTRICS

Quazi Hussain, David Brigham, and Clay Maranville
Research & Advanced Engineering
Ford Motor Company
Objective

- Investigate potential for generating electricity from exhaust waste heat in a hybrid vehicle using thermoelectrics.

Why Exhaust Heat?

- Of the available energy in fuel, only about $1/5^{th}$ and $1/3^{rd}$ is converted into useful work at part load and full load conditions, respectively. The rest of the energy is primarily wasted.

Temperature and energy content of exhaust gas is high.
- Exhaust gas temperature can reach as high as $900^\circ C$ with potential for high cycle efficiency.
Why Thermoelectrics?

• Direct conversion of heat into electricity with few or no moving parts.
• Less components needed thus less packaging & weight constraint compared to a Rankine power generation cycle.
• Potentially reliable and rugged device.
• No environmental side effects.

Where is it used?

• Satellites, space probes
• Remote gas and oil pipelines for powering instruments
• Military application where silent power generation is a priority
Why Not in Automobiles?

- Low conversion efficiency.
- High cost of thermoelectric material.
- Additional weight/volume penalty for automotive application.

Why Now?

- Increased need to reduce fuel consumption.
- Higher price of fuel renders technology that was too expensive previously much more cost competitive now.
- Recent advancements in nanotechnology and semiconductor physics holds promise more than ever before.
- Dedicated companies and government agencies working towards better understanding and implementation of the technology.
Thermoelectrics Fundamentals

- Thermoelectric generators, similar to thermocouples, are based on Seebeck effect.
- Two dissimilar conductors, joined end to end, when subjected to a temperature differential at the two ends produces a electrical potential (voltage).
- Thermoelectric generators work on the same principle using p and n type semiconductor material. Voltage is generated and current flows from n to p.
TE Device Geometry

Side Sectional View

Front Sectional View

Coolant In
Coolant Out

Exhaust In
Exhaust Out

Thermoelectric Material Lined Channels

Channel Length

Channel Width

A “9” Channel TE Generator

TE thickness
Electric Network Analog of GT-Power TE Model

Exhaust Gas

Temperature Profile

Coolant

$R_A = X_A/4K_A A_1$

$R_B = X_B/2K_B A_1$

$R_C = X_C/2K_C A_1$

$R_D = X_D/2K_D A_1$

$R_E = Y_A/2K_A A_2$

$R_I = 1/h_i A_1$

Y_A

$T_H (Source)$

$T_C (Source)$

T_G

T_F

$R_o = 1/h_o A_1$
Heat Transfer and Power Generation in TE material

\[Q_H = K\Delta T + \alpha T_H I - \frac{1}{2} I^2 R_i \]

\[Q_C = K\Delta T + \alpha T_C I + \frac{1}{2} I^2 R_i \]

Power
\[= Q_H - Q_C \]
\[= (\alpha\Delta T)I - I^2 R_i \]
\[= V_{oc} I - I^2 R_i \]
\[= I(R_i + R_L)I - I^2 R_i \]
\[= I^2(R_i + R_L) - I^2 R_i \]
\[= I^2 R_L \]
Key Model Features

- GT-Power solver used
- Commercially available thermoelectric material
- Temperature dependent TE material property
- Prescribed cold junction temperature
- No thermal contact resistance
- No heat loss from the device to ambient
- Steady state solution uses cycle average mass flow rate and gas temperature as input
- Transient solution uses time dependent mass flow rate and gas temperature as input
• Under identical operating conditions and material properties, predicted results are compared against theoretical values for a single p-n junction (Direct Energy Conversion” – Stanley W. Angrist, 4th Ed., Allyn and Bacon, Inc., 1982)
System Layout

• The TE generator is placed downstream of the catalytic converter on the exhaust line.
• This location will not interfere with emission control strategy.
• Benefits from the exothermic reaction in the catalytic converter.
Steady State Design Optimization

- Four factors were identified that affect the performance of a TEG of a given material property and a given boundary condition:
 - Channel Length, L
 - Channel Number, N
 - Channel Width, W
 - TE Thickness, t

<table>
<thead>
<tr>
<th>Factor</th>
<th>Min Range</th>
<th>Max Range</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Length (mm)</td>
<td>100</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>Channel Number</td>
<td>5</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>Channel Width (mm)</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>TE Thickness (mm)</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- Channel width (W) is the most sensitive factor.
Design Optimization

- TE mass, pressure drop, and response time were evaluated as constraints.
- Time constant as a measure of response time was determined from lumped heat capacity
 \[\tau = \frac{c \rho V}{h A} \]
- 2.5L Atkinson Engine in Escape Hybrid vehicle is used.

<table>
<thead>
<tr>
<th>Drive Condition</th>
<th>Mass Flow Rate (kg/hr)</th>
<th>Temperature (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway</td>
<td>56.5</td>
<td>638</td>
</tr>
<tr>
<td>City</td>
<td>19.5</td>
<td>570</td>
</tr>
</tbody>
</table>
Design selection flowchart

Parameter	Design 1	Design 2	Design 3
Power | Medium | High | Low
TE Mass | Medium | High | Low
Pressure Drop | Medium | High | Low
\(N\) | 20 | 15 | 25
\(L\) (mm) | 150 | 250 | 100
\(W\) (mm) | 5 | 5 | 5
\(t\) (mm) | 3 | 3 | 2

Selected designs

Final design
Power versus TE Mass: Steady State Highway Drive Condition

Peak Power

Design 2

Design 1

Design 3

(a) 5mm X 5mm Channel

Power (W)

TE Mass (g)

N = 5, L = 100
N = 10, L = 100
N = 15, L = 100
N = 20, L = 100
N = 25, L = 100
N = 30, L = 100
N = 5, L = 150
N = 10, L = 150
N = 15, L = 150
N = 20, L = 150
N = 25, L = 150
N = 30, L = 150
N = 5, L = 200
N = 10, L = 200
N = 15, L = 200
N = 20, L = 200
N = 25, L = 200
N = 30, L = 200
N = 5, L = 250
N = 10, L = 250
N = 15, L = 250
N = 20, L = 250
N = 25, L = 250
N = 30, L = 250
N = 5, L = 300
N = 10, L = 300
N = 15, L = 300
N = 20, L = 300
N = 25, L = 300
N = 30, L = 300
Power versus Pressure Drop: Steady State Highway Drive Condition

Peak Power

Design 1

Design 2

Design 3

Log Pressure Drop (kPa)

5mm X 5mm Channel

(b)

Power (W)
Power versus Response Time: Steady State Highway Drive Condition

- **Design 1**
- **Design 2**
- **Design 3**

- **Peak Power**

Power (W) vs. Time Constant (s) for different values of N (number of elements) and L (length of channel):

- N = 5, L = 100
- N = 10, L = 100
- N = 15, L = 100
- N = 20, L = 100
- N = 25, L = 100
- N = 30, L = 100
- N = 5, L = 150
- N = 10, L = 150
- N = 15, L = 150
- N = 20, L = 150
- N = 25, L = 150
- N = 30, L = 150
- N = 5, L = 200
- N = 10, L = 200
- N = 15, L = 200
- N = 20, L = 200
- N = 25, L = 200
- N = 30, L = 200
- N = 5, L = 250
- N = 10, L = 250
- N = 15, L = 250
- N = 20, L = 250
- N = 25, L = 250
- N = 30, L = 250
- N = 5, L = 300
- N = 10, L = 300
- N = 15, L = 300
- N = 20, L = 300
- N = 25, L = 300
- N = 30, L = 300
Power versus TE Mass: Steady State City Drive Condition

- Higher power generation potential exists with reduced number of channels

- This will lead to excessive backpressure under high mass flow

![Graph showing power versus TE mass for different designs and channel configurations.](attachment:graph.png)
Energy Balance in a TEG

Design 1: \(L = 150, \ N = 20, \ W = 5 \text{ mm}, \ t = 3 \text{ mm} \)

\[T_h = 263^\circ C \]
\[321^\circ C \]
\[T_c = 100^\circ C \]

Power = 325 W
Efficiency = 5.97%

Th = 263\(^\circ\) C
Tc = 100\(^\circ\) C

321\(^\circ\) C
4,827 W

Heat Reject
5,120 W

Carnot Efficiency = \((T_h - T_c) / T_h = 30.4\% \)

Steady State Highway

570\(^\circ\) C
3,130 W

T_h = 157\(^\circ\) C

T_c = 100\(^\circ\) C

239\(^\circ\) C
1,193 W

Heat Reject
1,885 W

Carnot Efficiency = \((T_h - T_c) / T_h = 15.3\% \)

Steady State City

- Low thermal efficiency is the primary reason why TE use is limited.
- Even though thermal input is free of cost in waste heat recovery, large amount of TE material (cost) is needed for meaningful power.
Transient Analysis

Cycle Averaged Power = 330 W
Cycle Averaged Power = 78 W
Cycle Averaged Pressure Drop = 4.01 kPa
Cycle Averaged Pressure Drop = 1.03 kPa

Design 1: Highway Drive Cycle
Design 1: City Drive Cycle
Transient Analysis

- So far, TE device was decoupled from downstream exhaust system. In reality this is not the case.

- Moreover, it is important to take into consideration the added backpressure the engine will be subjected to when a thermoelectric generator is placed in an exhaust system.

- To do this, an orifice size was first calibrated that replicates the pressure drop of the exhaust system.

- Next this orifice was placed at the outlet of the thermoelectric device to impose exhaust system backpressure.
Transient Analysis

Pressure Drop: Highway Drive Cycle

Pressure Drop: City Drive Cycle

If the added backpressure is not acceptable then a less restrictive design will be selected at the cost of lower electricity generation.
Transient versus Steady State Analysis

Design comparison under highway drive conditions

<table>
<thead>
<tr>
<th></th>
<th>Design 1</th>
<th></th>
<th>Design 2</th>
<th></th>
<th>Design 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tran</td>
<td>SS</td>
<td>Tran</td>
<td>SS</td>
<td>Tran</td>
<td>SS</td>
</tr>
<tr>
<td>TE Mass (kg)</td>
<td>1.39</td>
<td></td>
<td>1.73</td>
<td></td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Power (W)</td>
<td>330</td>
<td>325</td>
<td>391</td>
<td>380</td>
<td>248</td>
<td>230</td>
</tr>
<tr>
<td>Backpressure (kPa)</td>
<td>5.59</td>
<td>3.21</td>
<td>10.24</td>
<td>7.21</td>
<td>3.92</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Design comparison under city drive conditions

<table>
<thead>
<tr>
<th></th>
<th>Design 1</th>
<th></th>
<th>Design 2</th>
<th></th>
<th>Design 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tran</td>
<td>SS</td>
<td>Tran</td>
<td>SS</td>
<td>Tran</td>
<td>SS</td>
</tr>
<tr>
<td>TE Mass (kg)</td>
<td>1.39</td>
<td></td>
<td>1.73</td>
<td></td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Power (W)</td>
<td>78</td>
<td>52</td>
<td>94</td>
<td>63</td>
<td>56</td>
<td>35</td>
</tr>
<tr>
<td>Backpressure (kPa)</td>
<td>1.55</td>
<td>0.32</td>
<td>2.78</td>
<td>0.73</td>
<td>1.05</td>
<td>0.2</td>
</tr>
</tbody>
</table>

More unsteady the input condition (city vs. highway), more the difference between steady state and transient results
Cold Junction Temp Effect

- Power increases almost linearly with drop in cold junction temp.
- A dedicated radiator is needed to take advantage of this.
- This will add cost, weight and complexity to the system.
Summary

- It is technically feasible to use thermoelectrics to generate electricity from exhaust waste heat.
- The model predicts the potential of 300 W – 400 W generation for EPA highway drive cycle with 2.5L hybrid Atkinson engine.
- Much lower power output is predicted for EPA city cycle.
- The thermoelectric device when placed on the exhaust system increases net backpressure on the engine although downstream exhaust system backpressure is reduced due to cooling effect.
- Backpressure increase will go against any fuel economy benefits derived from the electrical power generation in the TE device.
- More unsteady the input condition, more the difference between steady state and transient results.
- A dedicated radiator can increase TE output.
APPENDIX
Thermoelectrics Fundamentals

- Figure of Merit of a thermoelectric material is defined as
 \[Z = \frac{\alpha^2 \sigma}{\lambda} \]
 Where, \(\alpha \) is Seebeck coefficient, \(\sigma \) is electrical conductivity and \(\lambda \) is thermal conductivity.
- \(Z \) is more commonly expressed as the *dimensionless figure of merit* \(ZT \) by multiplying it with the average temperature, \(\frac{T_H + T_C}{2} \).
- \(ZT \) is proportional to the efficiency of the device. Values of \(ZT = 1 \) are considered good.
- \(ZT \) is convenient for comparing device performances using different materials.
Mathematical Formulation

• The thermal efficiency is maximized by choosing an optimum ratio of load resistance to internal resistance,
 \[m = \frac{R_L}{R_i} \]

• This is derived to be, \(m^* = (1 + ZT)^{1/2} \)

• Heat flowing into and out of hot and cold junctions are,
 \[Q_H = K\Delta T + \alpha T_H l - (1/2)l^2R_i \]
 \[Q_C = K\Delta T + \alpha T_C l + (1/2)l^2R_i \]

 Where \(K \) is thermal conductance and \(l \) is current. Note that the first term is the flow of heat due to temperature gradient, second term is Peltier effect and the third term is the Joule effect.

• The difference of heat going into hot junction and coming out of cold junction is the power produced,
 \[P = Q_H - Q_C \]
Mathematical Formulation

- Alternatively, power generated can also be defined as,
 \[P = I^2R_L \]
 where current is found from,
 \[I = \alpha \Delta T / (R_i + R_L) \]
- Thermal efficiency, the ratio of power generated to heat supplied is,
 \[\eta = P / Q_H \]
- In terms of junction temperatures the thermal efficiency is defined as,
 \[\eta = \left[\frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + (T_C / T_H)} \right] \frac{T_H - T_C}{T_H} \]

- The second term is the Carnot efficiency and higher value of \(ZT \) leads to higher efficiency for a given hot and cold side temperature
Modeling Approach & Assumptions

- A TE generator is made of a large number of TE elements. It is not practical to solve for each of them individually.
- A group of elements are lumped together for practicality. Each lump has its own temperature, voltage and current. One group of such couples are referred to as a segment.
- Study was done to determine least number of segments that provided sufficient accuracy.
- Device efficiency versus TE segments was compared.
- 3 segments were found to be adequate and used in this work