NEDC Simulation with GT-Drive

Dipl.-Ing. R. Kuberczyk
Prof. Dr.-Ing. M. Bargende
Overview

1. Introduction
2. Simulation Background
3. Investigated Vehicles
4. Split of loss calculation in the NEDC
5. Conclusion
Introduction

NEDC and Split of Loss Calculation:
• Split of loss calculation in combustion engines is commonly used for comparing combustion systems on the test bench
• Gives an idea how to optimize the internal combustion to increase efficiency

➔ How to do a split of loss calculation based on the NEDC?
Overview

1. Introduction
2. Simulation Background
3. Investigated Vehicles
4. Split of loss calculation in the NEDC
5. Conclusion
Simulation background

City Cycle

EUDC

today

Vehicle speed [km/h]

0 20 40 60 80 100 120

0 200 400 600 800 1000 1200

time [sec]
Simulation background

- GT-DRIVE MODEL
 Vehicle

- GT-POWER MODEL
 SI-Engine

- MEASURED DATA/
 Engine Operating Map
 Diesel-Engine

- COMBUSTION PROCESS ANALYSIS/
 Split of Losses
 NEDC

coupled calculation
Overview

1. Introduction
2. Simulation Background
3. Investigated Vehicles
4. Split of loss calculation in the NEDC
5. Conclusion
Investigated Vehicles

Vehicle
weight: 1540 kg
gearbox: 6-gears (mechanical gearbox)
cw-value: 0.27

SI-Engine
number of cylinders: 4
gine displacement: 2198 cm³
power: 114 kW (5600 rpm)
compression ratio: 11.3

Diesel-Engine
number of cylinders: 4
gine displacement: 2148 cm³
power: 107 kW (4200 rpm)
compression ratio: 16.5
Overview

1. Introduction
2. Simulation Background
3. Investigated Vehicles
4. Split of loss calculation in the NEDC
5. Conclusion
Split of loss calculation in the NEDC

- loss by real charge
- loss by not optimal position of the combustion centre
- loss by HC+CO-emissions
- loss by finite combustion duration
- loss by real caloric
- loss by heat release through cylinder walls
- expansion loss
- compression loss
- loss by ideal gas exchange
- loss by real gas exchange
- loss by total gas exchange
- mechanical loss

Intension:
Where does a vehicle with a SI-engine compared to the vehicle with a diesel engine loose efficiency?
Loss by not optimal position of the combustion center [%]
Mechanical loss [%]

Losses will be summed up...
Energy Losses summed up in the EUDC [%] (without engine idle part)

Which losses are higher with SI-Operation?

- Energy Loss [%]
 - + 4% higher because of unsteady effects
 - + 1.5%
 - + 4.2%

⇒ e.g. Stratified Operation allows reduction of the gas exchange losses!
Stratified Operation in EUDC

Loss by total gas exchange [%]

- **Diesel Engine**
- **SI-Engine**

Parameters:
- **V [km/h]**: 0, 20, 40, 60, 80, 100, 120
- **rpm [1/min]**: 500, 1500, 2500, 3500
- **time [sec]**: 775, 825, 875, 925, 975, 1025, 1075, 1125, 1175
- **pme [bar]**: 0, 2, 4, 6, 8
- **gear**: 0, 1, 2, 3, 4, 5
- **L. of total gas. ex. [%]**: 0, 4, 8, 12, 16

Stratified Operation
Overview

1. Introduction
2. Simulation Background
3. Investigated Vehicles
4. Split of loss calculation in the NEDC
5. Conclusion
Conclusion

Split of loss calculation with GT-Drive:
 • Split of loss calculation is very fast and useful for analysing combustion systems
 • Useable on the test bench or based on data coming up with the GT-Power Simulation
 • Split of loss calculation coupled with GT-Drive allows a deep understanding of the different behavior of cars with SI-engines and Diesel engines
 • Powerful Tool to understand where to reduce the fuel consumption in the NEDC