Performance Simulation of Small Turbo GDI Engines

Christof Schernus1, Carolina Nebbia2, Carsten Dieterich1, Stefan Wedowski1

1FEV GmbH, Aachen
2FEV Italia s.r.l., Torino
Overview

Introduction
Target, Dimensions and Package Considerations
Mass Balance and Friction
Comparison of T/C Engines w/ 2 & 3 cylinders
Conclusion
Downsizing = possible path to meet CO₂ targets for 2012/2019
Coping with CO2 targets: Load point shift by Downsizing

Downsized engine drivability requires boosting
Downsizing: Improved Engine Length

Package improvement

- Base: 1.4 dm³ 4-cyl. NA, 74 kW
 - Stroke/bore = 80/74.5
 - Bore pitch = 85.5 mm
- Mk #1: 0.9 dm³ 4-cyl. Turbo, 74 kW
 - Stroke/bore = 69.1/64.3
 - Bore pitch = 73 mm
- Mk #2: 0.9 dm³ 3-cyl. Turbo, 74 kW
 - Stroke/bore = 76/70.8
 - Bore pitch 80.4 mm
- Mk #3: 0.9 dm³ 2-cyl. Turbo, 74 kW
 - Stroke/bore=87/81
 - Bore pitch 92 mm

- 7%
- 17%
- 28%

2- and 3-cylinder engine bore sizes suitable for GDI
Mass Balance and Friction
Example of 2-cylinder Parallel Twin Cranktrain

Parallel Twin needs 1st order balancer shaft, FMEP ↑
Equal TC: Full load performance and fuel consumption

- target of 74 kW achievable with both, but 3-cyl has reserves
Compressor operation at full load

Similar risk of surge
2-cylinder @ higher rpm:
- Higher boost pressure
- Larger loops
- Excursion into η_{sc} ↓

larger fluctuations in 2-cyl at med. & high engine speeds
Turbine characteristics at full load

TC match to 3-cyl. Appears too small for 2-cylinder engine
Larger excursions to low BSR in 2-cyl. Engine
⇒ Turbine appears too small
Pulsation effects on turbine side, 2500 min-1, equal T/C

- Slight backflow

- 2-cyl flow rate discontinued between exhaust strokes
CFD Assisted Turbine Map Extension to Cover Pulsation Effects

Model must cover Stagnation and Reversal of turbine flow
CFD Assisted Turbine Map Extension to Cover Pulsation Effects

Model must cover Stagnation and Reversal of turbine flow
2- and 3-cylinder turbocharging
Interim conclusion

Surge limited low end torque
- Applies to both 2- and 3-cylinder engine
- Already with small base turbocharger

2-cylinder needs larger turbine
Larger turbine only available with larger compressor
Larger compressor in conflict with low end torque
- Map of larger compressor ranges in larger flow rates
- Required boost pressure at low speeds exceeds surge line
Larger turbo for 2-cylinder engine

Pre-swirl device
- Converts standard compressor into VGC
- Extends operation range to small flow rate
- Wide open blades
 - New generation: negligible pressure loss
- Closing blades:
 - Swirl ↑, pCin ↓, turbo rpm ↑
 - Makes compressor virtually smaller

High boost at low speeds from large compressor with preswirl
Larger turbo for 2-cylinder engine

3-cyl with KP35
2-cyl with KP39

- w/o &
- w/ pre-swirl device

2-cyl. low end torque can be recovered by larger VGC
Different T/C’s on 2-cylinder engine

Compressor: Efficiency Map - Reduced
2-cylinder w/ Base KP35 TC

Compressor: Efficiency Map - Reduced
2-cylinder w/ KP39 TC

Compressor: Efficiency Map - Reduced
2-cylinder w/ KP39 TC & var. compressor

Variable pre-swirl helps compressor operation:
smaller loops, better surge margin, better efficiency
Conclusions

GT-POWER study on small turbo engines
Different T/C matching for 2-cylinder engines
- Larger turbine than for 3-cylinder engine
- Larger compressor than for 3-cylinder engine
- Larger fluctuations due to less continuous flow

3-cyl with better NVH and fuel consumption
Package and cost advantageous for 2-cyl, e.g. for HEV
2-cyl’s larger bore likely to cause less oil dilution
Performance Simulation of Small Turbo GDI Engines

Christof Schernus¹, Carolina Nebbia², Carsten Dieterich¹, Stefan Wedowski¹
¹FEV GmbH, Aachen
²FEV Italia s.r.l., Torino

Acknowledgements
BWTS: Frank Schmitt
Polito: Federico Millo
FEV: Richard Aymanns, Raimund Vedder, Johannes Scharf, Franz-Gerd Hermsen