A GT-POWER Based Predictive Radial Turbine Model (Progress report)

Jan Macek, Oldřich Vítek, Ján Burič
Czech Technical University in Prague, Josef Božek Research Center
Overview of Presentation

1. Introduction
2. Tools for 1-D Simulation of a Radial Turbine
3. Application of 1-D Modules to In-Turbine Flow Simulation
4. Calibration of a 1-D Turbine Model
5. Examples of Results
6. Conclusion and Prospects

Goals:

To simulate interaction between exhaust pressure waves and a turbine.
To extrapolate a turbine map keeping physical meaning of it.
1. Introduction: State-of-the-Art

- Attempts to describe pressure waves at a turbine (or compressor) since 1960’s to present: simple, schematic models using “1D” central streamline w/o realistic geometry.

- “1D” central streamline steady model developed and successfully calibrated (SAE 2002, SAE 2008)

- Measurements at model turbine pulsator testbeds or directly at an engine- use of results with mass/energy accumulation?

- Tools for 3-D CFD simulations – time and computer capacity requirements.

- Tools for 1-D simulations (nearly) ready for application (SAE 2008).
1. Introduction: Motivation

TURBINE PARAMETERS = f(deg CA)

- Isentropic Efficiency η_T
- Discharge Coefficient μ_T
- Velocity Ratio $x = \frac{u}{c}$

Crank Angle [deg from CTDC]

- η_T
- μ_T
- π_T

Medium scales should be addressed.

Heisler, Engine Technology. SAE 1998
1. Introduction: Motivation

Tools for 1-D Simulation of a Radial Turbine

Application of 1-D Modules to In-Turbine Flow Simulation

Calibration of a 1-D Turbine Model

Normalized Velocity Maps of Radial Turbine

Optimum Velocity Ratio

Radial Turbine at High Pressure Ratio

Isentropic Efficiency and Velocity Ratio [1]

Discharge Coefficient : Nozzle Exit Mach Number [1]

Normalized Blade Speed Ratio \(\times / \times_{\text{nom}} \) [1]

Pressure Ratio \(\pi T \) [1]
1. Introduction: Motivation

- More flexible turbine model for different layouts with integrated boost control or EGR suitable at medium time-scale accuracy.

- Integrated WG chamber or outlet diffuser.
1. Introduction: Motivation

- More flexible turbine model for different layouts with integrated boost control or EGR suitable at medium time-scale accuracy.

- Outlet diffuser with unsteady flow.
2. Tools for 1-D Simulation of a Radial Turbine

- Modules and solvers for 1-D “Pipe” with variable cross/section area, source terms for enthalpy and momentum, external acceleration (rotating pipe) and curvature.
- Modules for flow momentum mixing/splitting (“Flow splits”).
- Modules for orifices with variable discharge coefficient/area and sensor/signal processor/actuator chains.
- 1-D central streamline, steady flow turbine model. Definition of loss and flow separation coefficients.
2. Tools for 1-D Simulation of a Radial Turbine

- Modules with external acceleration: splitting an impeller into parts with different orientation to axis of rotation
2. Tools for 1-D Simulation of a Radial Turbine

- Transformation modules must be "programmed" separately to change total enthalpy by a source term (heat transfer) and velocity (piping cross-section) maintaining all static state parameters and mass flow rate.

\[
\frac{\dot{m}_I}{\dot{m}_N} = \Delta m_{I\text{leak}}
\]

\[
\frac{w_{r2I}}{c_{r2I}} = \frac{\dot{m}_I}{\rho_{2N}A_{2N}}
\]

\[
\tan\beta_{2I} = \frac{w_{r2I}}{w_{r2I}} \frac{\tan\alpha_{2N} - w_u}{w_{r2I}}
\]

\[
\Delta H_0 = \dot{m}_I(h_{0\text{rel}} - h_0) = \frac{w_2^2 - c_2^2}{2} = -\dot{m}_I \frac{w_r^2}{2}(\tan^2 \alpha_{2N} - \tan^2 \beta_{2I})
\]
2. Tools for 1-D Simulation of a Radial Turbine

\[m = A_2 \rho_2 w_{2s} = (C_D A_{geom2}) \rho_2 (\eta w_{2s}) \]

\[\frac{w_{2s}^2}{2} = h_{01} - h_{2s} = h_{01} - h_2 + \Delta h_{lost} = \frac{h_{01} - h_2}{\eta} = \frac{w_2^2}{2\eta} \]

\[\Delta h_{lost} = c_p T_{01} \left[1 - \left(\frac{p_{02}}{p_{01}} \right)^{\frac{k-1}{k}} \right] = \frac{C_p}{2} w_2^2 \]

\[\eta = \frac{1}{1 + C_p} \; ; \; \quad C_D = \sqrt{\eta} \]
2. Tools for 1-D Simulation of a Radial Turbine

- Modules and solvers for 1-D “Pipe” with variable cross/section area, source terms for enthalpy and

\[w_{ref} = \frac{m_I}{A_{ref} \frac{p_2}{rT_2}} \]

\[w_{u2} = \frac{\pi D_{I2}}{60} n_T \]

\[\tan \delta = \frac{w_{ref} \tan \gamma \pm w_u}{w_{ref}} \]

\[q = h_{01} - h_{02} = K \frac{c_2^2 - w_2^2}{2} = \mp w_{ref}^2 \left(\tan^2 \gamma - \tan^2 \delta \right) \]

\[w_{transf} = \frac{w_{ref}}{\cos \delta} \] (assessment of kin.en. dissipation)
3. Application of 1-D Modules to In-Turbine Flow Simulation

- Existing 1-D turbine model for steady flow: transformation into unsteady 1-D scheme

\[q = h_{01} - h_{02} = \pm \frac{c_2^2 - w_2^2}{2} = \mp w_{ref}^2 \left(\tan^2 \gamma - \tan^2 \delta \right) \]
3. Application of 1-D Modules to In-Turbine Flow Simulation

Introduction

Tools for 1-D Simulation of a Radial Turbine

Application of 1-D Modules to In-Turbine Flow Simulation

Unsteady Flow Pipe P1

Flow Connection $\mu = 1$

Turbine Nozzle P2

Flow Connection

Stator Impeller P3

Flow Connection

Turbine Impeller RP 4

Flow Connection

Impeller - Stator P4

Unsteady Flow Pipe P1

half scroll length
3. Application of 1-D Modules to In-Turbine Flow Simulation

Amended modules

Sources and sinks of total enthalpy

\[w_{ref} = \frac{m_1}{A_{ref} \frac{p_2}{rT_2}}; \quad w_{u2} = \frac{\pi D I_2}{60} n_T \]

\[\tan \delta = \frac{w_{ref} \tan \gamma \pm w_u}{w_{ref}} \]

\[q = h_{01} - h_{02} = K \frac{c_2^2 - w_2^2}{2} = +w_{ref}^2 \left(\tan^2 \gamma - \tan^2 \delta \right) \]

\[w_{transf} = \frac{w_{ref}}{\cos \delta} \] (assessment of kin.en. dissipation)
3. Application of 1-D Modules to In-Turbine Flow Simulation

- Borda Carnot pressure recovery has to be compensated at transformation pipe connections (in a different way for subsonic and sonic regions).
- Amendment of rothalpy and centrifugal acceleration terms into energy and momentum conservation equations.

![Carnot/Borda Pressure "Loss" graph](image-url)
3. Application of 1-D Modules to In-Turbine Flow Simulation

Turbine torque has to be calculated from the change of angular momentum.

\[
\Delta M_{\text{T,turbine}} = \frac{\partial}{\partial t} \int_v r \times c \, \rho dV - \int_{\partial V} (r \times c) \cdot n \, \rho dA =
\]

\[
\frac{\partial}{\partial t} r \times c \, \rho \Delta V - \left[m(r \times c) \right]_{\text{out}} + \left[m(r \times c) \right]_{\text{in}} \approx \sum_i^{n} \left[r \, m(\omega r + w \cos \varepsilon_i) \right]_{\text{in} i} + \left[r \, m(\omega r + w \cos \varepsilon_i) \right]_{\text{out} i} - r(\omega r + w \cos \varepsilon_i) \left(m_{\text{in} i} - m_{\text{out} i} \right) + \left(m_j r_j^2 \frac{d\omega}{dt} - m_j r_j \cos \varepsilon_j \frac{dw_j}{dt} \right)
\]
3. Application of 1-D Modules to In-Turbine Flow Simulation

- **Leakage flows.**
- **Windage losses and mechanical efficiency prediction.**
- **Input of additional pressure losses (incidence angle, ...)** as the sink term of momentum and flow separation losses.
- **Backflows through impeller channels.**
- **Twin scroll flow mixing.**
- **Vaneless nozzle or downstream diffuser.**
4. Calibration of 1-D Turbine Model

To build GT Power model:

- Experiments at a turbine (reduced mass flow-rate & turbine efficiency at different PR and BSR \(u/c_s \))
- Geometrical parameters for GT Power model
- Calibration of GT Power model at steady flow using optimizer
- Use of GT Power model for unsteady simulations.
4. Calibration

- Calibration errors may be reduced:

 The experimental data subdivided into smaller groups in dependence on turbine speed.

 More flexible approach based on general optimization methods (e.g., genetic algorithms) finding generally valid fixed parameters.

Optimization results

- Total isentropic efficiency - low speed optimization

- Total discharge coefficient - Low speed optimization
4. Calibration of 1-D Turbine Model

- The first calibration procedure using “the best fit model parameters” using non-linear regression was published in SAE 2002-01-0337. It finds variable calibration parameters.

- More suitable approach is based on general optimization methods (e.g., genetic algorithms) finding generally valid fixed parameters.

- Calibration errors due to the variability of parameters may be reduced: The experimental data can be subdivided into smaller groups in dependence on turbine speed and/or pressure ratio.
5. Examples of Results

Examples of prediction of a turbine discharge coefficient and efficiency - steady flow.

The unsteady 1-D model has used only simplified losses yet, i.e., no look-up tables and no correction of incidence angle loss.
Introduction
Tools for 1-D Simulation of a Radial Turbine
Application of 1-D Modules to In-Turbine Flow Simulation
Calibration of a 1-D Turbine Model

Examples of

Velocity Map of a Radial Turbine

- data based on MS Excel Efficiency
- data based on 1-D GT-Power Efficiency
- Discharge Coefficient

Turbine map calculated from steady and 1-D unsteady models for the set of pressure and blade speed ratios.

Turbocharger test rig model used for steady flow tests.

Turbine used at 4 cylinder engine.

Isentropic Efficiency at Pressure Ratio=1
Isentropic Efficiency at Pressure Ratio=2.0
Isentropic Efficiency at Pressure Ratio=2.5
Isentropic Efficiency at Pressure Ratio=3.0
Isentropic Efficiency at Pressure Ratio=3.5

Discharge Coefficient at Pressure Ratio=2.0
Discharge Coefficient at Pressure Ratio=2.5
Discharge Coefficient at Pressure Ratio=3.0
Discharge Coefficient at Pressure Ratio=3.5

Efficiency data based on MS Excel
Efficiency data based on 1-D GT-Power
Discharge Coefficient
5. Examples of Results

Introduction

Tools for 1-D Simulation of a Radial Turbine

Application of 1-D Test at simulated turbocharger test-rig (turbine loaded by a compressor). Turbine operation close to optimum efficiency before sonic limit is reached.

Conclusion and Prospects
5. Examples of Results

Introduction
Tools for 1-D Simulation of a Radial Turbine

Application of 1-D Modules to In-Turbine Flow Simulation

Calibration of a 1-D Turbine Model

Comparison of 0-D and 1-D Turbine Models at a 4 Cylinder, Single Exhaust Engine at 1200 rpm
5. Examples of Results

BSFC - Brake Specific Fuel Consumption, Part Engine

- 1-D_unsteady
- 0-D_GT-P_standard
- 0-D_GT-P_GridMap
- 0-D_regression
6. Conclusion and Prospects

- Steady model has been validated and prepared for expected application.
- The work on fully unsteady model in progress, application of detailed loss model will be done soon.
- Models under development:
 - **Twin scroll model** (momentum exchange, backflow to the other manifold branch, asymmetry of flows)
 - Impeller channel unsteadiness due to rotation along scroll. Use of unsteady channel-switching model from PWS (COMPREX®) SAE 2004-01-1000
Prospects

...an engine in... of “TPA” from GT
Conclusion and Prospects

Introduction to 1-D Simulation of a Radial Turbine

Application of 1-D Modules to In-Turbine Flow Simulation

Calibration of a 1-D Turbine Model

Future comprehensive model of a turbine: scroll/blades/impeller

Stator – Impeller

Stator – Impeller

Turbine Impeller RP 1

Turbine Impeller RP 2

Impeller – Stator P1

Impeller – Stator P2

Scroll Flow Split FS1

Scroll Flow Split FS2

Scroll Flow Split FS3

Turbine Nozzle N1

Impeller Leakage 1

Turbine Nozzle N2

Impeller Leakage 2

Stator Impeller P1

Stator Impeller P2

Turbine speed

Leakage

Impeller – Stator P2

Leakage

Conclusion and Prospects
A GT-POWER Based Predictive Radial Turbine Model

Thank you for your attention!

Questions?
Transformation StatorImpeller

Inputs (1...upstream, 2...downstream, 0 .. total)

\(\rho_1, p_1, T_1, h_{01}, p_{01}, T_{01}, c_{p1}, \kappa = \frac{c_p}{c_v}, A_1, \ldots, \)

\(p_2, A_{2\text{ref}}, \gamma \) (angle of blades, actuated)

\(C_p = \frac{1}{\eta} - 1 \) (isentropic efficiency of \(\Delta h \rightarrow \frac{w^2}{2} \), actuated)

\(C_D = K_{\text{sep}} \) (coefficient of flow contraction in Flow Connection, actuated)

\(K = \begin{cases} -1 & \text{stator} \rightarrow \text{imp} \\ +1 & \text{imp} \rightarrow \text{stator} \end{cases} \)
Transformation StatorImpeller

Velocity and total state transformation

\[
\begin{align*}
\dot{w}_\text{ref} &= \frac{m_I}{A_{\text{ref}} \frac{p_2}{r T_2}}; \quad \dot{w}_u = \frac{\pi D_{I2}^2}{60} n_T \\
\tan \delta &= \frac{w_{\text{ref}} \tan \gamma + Kw_u}{w_{\text{ref}}} \\
T_{02} &= T_{01} + K \frac{w_{\text{ref}}^2}{2c_p} \left(\tan^2 \gamma - \tan^2 \delta \right) \\
h_{02} &= h_{01} + Kw_{\text{ref}}^2 \left(\tan^2 \gamma - \tan^2 \delta \right) \\
W_{\text{transf}} &= \frac{w_{\text{ref}}}{\cos \delta} \quad (\text{assessment of kin.en. dissipation})
\end{align*}
\]
Transformation StatorImpeller

Outputs

\[m, \rho_2, h_{02}, W_2, w_{\text{ref}}, w_{\text{transf}}, T_{02}, \delta \] (angle of flow)