Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains

Prof. Dr.-Ing Georg Wachtmeister – LVK TU München

GT-SUITE Users Conference
Frankfurt, October 25, 2010
Agenda

- Motivation
- Scaling of SI-engines
 - approach
 - engine definition
 - scaling procedure
 - database of parameter variations
 - scaling functions
- Scaling examples and applications
- Conclusion
Motivation

- **Rising pressure on carmakers to reduce fuel consumption and emissions:** Climate change, finiteness of oil, policy, customer demands

- **Promising technologies for SI-engines:**
 - small, turbocharged engines
 - highly variable engines
 - lowering mechanical losses
 - thermal management
 - lean burn concepts
 - electric hybridisation

- **What is the right size and concept of ICE and EM in a HEV?**
Approach

- Engine maps
 - Flexibility
 - Accuracy

- Engine data
 - Efficiency
 - Friction losses
 - Exhaust energy
 - Heat losses

- Scaling Functions

- Engine cycle simulation

- Full vehicle simulation system
 - Fuel consumption
 - Performance
 - Thermal behavior

- Computing time
- Expertise
Engine definition

Parameters of a SI-engine:

Geometry
- cylinder z
- single cyl. volume V_h
- stroke-bore-ratio s/d
- compression ratio ε

Charging
- naturally aspirated
- turbocharged

Mixture Formation
- port fuel injection
- direct injection

Load Control
- throttled
- unthrottled

Combustion
- air/fuel ratio λ
- exhaust gas fraction y_r

![Diagram showing fuel energy distribution between exhaust, cooling, work, and friction.](image)
Scaling procedure

Reference data

Normalization: ideal combustion phasing

Normalization: \(\lambda = 1.00 \)

Multiple scaling

\(V_h, s/d, \varepsilon, \lambda, x_r \)

Scaled data

Re-normalization: real combustion phasing

Scaling

\(f_{Skal}(n, \lambda, x_{Skal}) \)
Sources of data and information:

- **References**: Over 100 years of engine development
- **Experimental data**: BMW engines
 - burn rate calculation (BRC)
 - three pressure analysis (TPA)
- **Gas exchange and cycle simulation**: GT-Power
 - completely scalable engine geometry (bore as scaling factor)
 - various engine concepts: NA – Turbo, PFI – DI, VVT, ext. EGR, etc.
 - geometry based sub-models:
 - predictive combustion model ("SI-Turbulent")
 - turbulence ("In-Cylinder Flow")
 - heat transfer ("Flow")
 - empirical knock model ("SI Knock", extended for diluted operation)

- Calibration by experimental and reference data
- Huge parameter variations in the entire operation map
Parameter variation

Variation of s/d-ratio at part-load: $n = 1500 \text{ 1/min, } \lambda_l = 0,4$

- Long-stroke engines show higher efficiency: fast combustion, low heat losses
- Only predictive and geometry based sub-models can describe all relevant phenomena accurately
Parameter variation

Variation of EGR and λ at high load: $n = 4000 \text{ 1/min, } p_{\text{me}} = 19 \text{ bar}$

$\tau = 0.01809 \cdot P \cdot (\text{ON/100})^{3.402} \cdot P^{-1.7} \cdot e^{(3800/T_u)}$

$P(\lambda, y_R) = 2.89 \cdot \lambda^2 - 4.85 \cdot \lambda + 2.50 \cdot y_R + 3.63$

extension for diluted operation

![Graphs showing variations in efficiency and other performance metrics with EGR rate and air/fuel ratio.](image)
Parameter variation

Combustion retard at borderline knock limit: Influence on the energy balance

- Satisfying accordance with measurements and references
- Stable correlations for various scaling parameters and operating points
Scaling functions

Requirements:
- flexible
- modular
- handy
- transparent
- comprehensible
- accurate

Type of functions:

basic function

\[f_{\text{Skal}} = \frac{a + b \cdot x^c}{a + b \cdot x_0^c} \]

\[\eta_i = \eta_{i,0} \cdot f_{\text{Skal},\eta}(x, x_0) \]

speed & load: polynomial type

\[f_{\text{Skal}} = \frac{a + f(n, \lambda_1, \ldots) \cdot x^c}{a + f(n, \lambda_1, \ldots) \cdot x_0^c} \]

interaction: linear type

\[f_{\text{Skal}} = \left(\frac{a + f(n, \lambda_1, \ldots) \cdot x^c}{a + f(n, \lambda_1, \ldots) \cdot x_0^c} \right) \sum_{i}^{n} (x_{q,i} - x_{q,0,i})d_i + 1 \]
Scaling example

Scaling a Turbocharged DI-engine from fixed to variable compression ratio:

Procedure: Finding the ideal compression ratio for every operation point by scaling function.

Further examples: Downsizing (w/ and w/o cylinder change), high load EGR, lean burn concepts, etc.
Fuel savings by downsizing and var. compression ratio:

- full vehicle simulation system: NEDC
- premium sedan: 1700 kg, 225 kW, automatic gearbox (8 gears), automatic engine stop
- scaled engine maps: friction, fuel consumption, exhaust energy, heat losses

![Graph showing fuel savings for different engine sizes.]

- 3.4 L 6 cyl. $\varepsilon_{ref} = 10.5$, -3.8%
- 3.0 L 6 cyl. $\varepsilon_{ref} = 11.0$, -4.0%
- 2.5 L 6 cyl. $\varepsilon_{ref} = 10.2$, -6.8%
- 2.0 L 4 cyl. $\varepsilon_{ref} = 9.1$, -6.8%

Sigma >20%
Interaction of engine technologies and electrification:

> fuel savings by electrification strongly depend on the the base efficiency of the conventional power train

> **but:** the extent depends on the effectiveness and the characteristic of a certain engine concept

> the operational strategy must be adapted for every HEV-architecture
Conclusion

- GT-Power was essential for deriving thermodynamic dependencies:
 - predictive and geometry based sub-models
 - extensive libraries to model and control diverse engine configurations
 - limited interfaces to sub-models
 - modeling of unburnt fuel (HC-Emissions)

- Scaling approach is suitable for investigating various SI-engine concepts and technologies in an early stage of development:
 - **not** for detailed engine optimization
 - **but** energetic evaluations

- Modular and stepwise procedure is open to further extensions:
 - more scaling parameters
 - distinguishing different engine concepts
 - detailed thermodynamics: further simulations, measurements
Thank you for your attention!