INTEGRATED CO-SIMULATION TO PREDICT VEHICLE AND POWERTRAIN PERFORMANCE

Rangarajan Srinivasan
Powertrain CAE - Systems

27 January 2020
INTRODUCTION

A) Importance of Subsystem
B) Importance of Model Integration
C) Motivation & Challenges
Importance of Subsystem

- Engine
- Coolant Circuit
- Oil & Friction Circuit
- Electrical System
- Vehicle + Driver
- Drive Train + Gear Box
- HVAC
- Control Strategy
1- INTRODUCTION

Model Integration

Trade off Performance

- Consumer demand
- Regulations
- Energy security
- Environment

- Electric Machines
- Power Electronics Modules
- Battery
- Energy Storage

- Safety
- Reliability
- Performance
- Comfort

- Energy Use
- Vehicle Thermal Management
- Advanced Technologies
- Cost
1- INTRODUCTION

Energy Management

Importance

Combined cooling loops
- Quicker engine warm-up
- Enhance fuel economy

Exhaust gas waste heat
- To recover exhaust energy –T/C

1) Integrate Systems

2) Remove Heat Efficiently
- Improve cooling system control
- Electric pumps and valves

3) Reuse Waste Heat

4) Reduce Thermal Loads
- Reduce parasitic power losses
- Parked car ventilation

Improved operating robustness and reduced energy use.
Background

Migration to Virtual Environment

- Engine
- Brake
- HVAC
- Transmission
- Controls

detailed physics of system to be modeled !!

How to integrate them in virtual environment ..??

1- INTRODUCTION

GT INDIA User Conference , 2020
Motivation and Challenges

Opportunities

- System design optimization and performance enhancement
- Modeling using system simulation during upstream development
- Advance simulation by co-simulation techniques (Integrated simulation)

Modeling Challenges in Current Scenario

- System Complexity
- Validation
- Integration
- Countermeasures

Benefits with Simulation

- Minimal Prototype
- Reduced efforts
- Reliability
- Prediction
1- INTRODUCTION

Outcome

- Modelling & Validation of full vehicle model by Co-simulation using GT-SUITE & SIMULINK
- Analyzing of each sub-system and its performance improvement with counter measure
VALIDATION OF SYSTEMS : EXAMPLE
A) HVAC
B) Engine Model
C) Vehicle + Transmission
D) ..
E)
HVAC System

Evaporator

Condenser with Receiver Dryer

Compressor

System Integration Inputs

Air From Car interior

Blower

Low Pressure & Low Temperature Liquid

High Pressure Liquid Line

High Temperature & High Pressure Vapour line

Low Pressure Vapour Line

Equation simulation model in GT-SUITE
2- VALIDATION OF SYSTEMS

Methodology

Tuning Parameters

➢ Multipliers (Friction, Heat Transfer)
➢ Lumped Mass
➢ Heat transfer coefficients
Simulation Steps for WOT calibration, Neural network training and PLP prediction

- **INPUTS**
 - Burn rate prediction
 - Air fuel ratio (A/F)
 - Engine speed
 - Intake pressure
 - Ignition timing
 - Volumetric efficiency

- **Training Neural networks:**
 - Air fuel ratio at WOT
 - Engine speed
 - Intake pressure at WOT
 - Ignition timing at WOT
 - Volumetric efficiency

- **FTP calibration:**
 - Engine speed
 - Intake and exhaust boundary
 - Intake and exhaust valve train and length
 - Intake and exhaust valve train and center angles
 - Intake and exhaust valve train
 - Valve train overlap
 - Intake valve closing angle
 - Intake valve opening angle
 - Intake valve closing angle
 - Intake valve opening angle

- **OUTPUTS**
 - Burn rate prediction
 - Training Neural networks for PLP prediction
 - FTP Calibration

Training Output Parameters

- Anchor angle
- Burn duration
- Wiebe exponent

GT INDIA User Conference, 2020
2- VALIDATION OF SYSTEMS

Vehicle & Powertrain model

Output Parameters

- Vehicle Velocity
- Indicated Torque
- Gear Shift & Brake Pedal State

Vehicle Speed (Kmph)

Engine Brake Torque (Nm)
03

System Integration
A) Co-simulation
B) Application
Full Vehicle model layout

Virtual Environment

- Velocity & Road Profile
- AC Control
- Driver
- ECU & TCU
- Brakes
- Engine
- Transmission
- Vehicle Body
- Other Systems
- AC loop
- Cabin Comfort
- Environment

3- SYSTEM INTEGRATION – [CO-SIMULATION]
3- SYSTEM INTEGRATION – APPLICATION

Vehicle Performance – Fuel Economy

System and Impact

- **Engine Performance**
 - Combustion
 - Friction Load
 - Fuel consumption

- **Engine Thermal Management**
 - Coolant Temperature
 - Oil Temperature
 - Transmission Oil Temperature

- **Air Conditioning**
 - Cabin Temperature
 - Compressor Torque
 - Condenser air outlet temp.

- **Vehicle Cooling**
 - Bypass activation
 - EGR activation
 - Warmup fuel flow

- **Aerokit+ Tires**
 - Drag Force
 - Rolling resistance

- **Transmission Model**
 - Gear Shift Position
 - Engine Speed
 - Transmission friction torque

- **Auxiliaries**
 - Electrical/ Mechanical Power demand
 - ON/OFF strategy

- **Controllers**
 - Fuel Cut, AC Cut
 - Speed Control
 - Activation Control

- **Air Filling**
 - Volumetric efficiency
 - Combustion
 - Booster Vacuum

- **Vehicle Dynamics**
 - Stability
 - Acceleration
 - Cornering, Tip in & Tip out

Impact of Co-simulation on IDC Fuel Economy

- 6.1%
- 5.8%
- 4.0%
- 2.0%
- 1.6%

Accuracy Improved

GT INDIA User Conference, 2020
Better cabin cooling temperature was observed using Variable Displacement Compressor.

VDC displacement is a function of Suction pressure & Evaporator air outlet temperature.

Engine Indicated Torque for VDC is Lesser than FDC due to less compressor torque demand by VDC by changing compressor displacement.
CONCLUSION
A) Benefits: Accuracy & Lead time Reduction
B) Continual Improvement
<table>
<thead>
<tr>
<th>Benefits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy and Lead time reduction</td>
<td></td>
</tr>
<tr>
<td>✓ Good Accuracy – Prediction of Vehicle and Powertrain performance by integrating all sub-systems with complex control system and its interface variable.</td>
<td></td>
</tr>
<tr>
<td>✓ Cost Avoidance – Eliminate the model duplication and reduce prototype testing.</td>
<td></td>
</tr>
<tr>
<td>✓ Time Reduction – Plug-in concept technique (Data base from MBSE Models).</td>
<td></td>
</tr>
<tr>
<td>✓ Quick Adaptive - New innovative ideas using virtual simulation and its impact (Proof of Concept).</td>
<td></td>
</tr>
</tbody>
</table>
Continual Improvements

Digital Validation [Less Lead time & More Confidence Level]

- **Integration of models** is complex and challenging – Software Compatibility.
- **Standard Process in place** to provide fast accurate results.
- **MBSE challenges** – Collaboration with Suppliers and Software developers.
- **New simulation methods** is part of process – Techno Brick.
- **Co-simulation In Place** – Interaction with Multiple software’s for better prediction and lead time reduction.
Acknowledgements

1. Francois Gougeon, VP – Powertrain Engineering, RNTBCI, Chennai, India.

3. P. Dimitrakopoulos - Gamma Technologies, USA
Thank You