A Detailed DOE Study for Concept Level Battery Electric Vehicle Energy Dimensioning

Lakshmi Nair, Shreyas Fulkar, Chandrakant Deshmukh, Rajeev KR

Mahindra Research Valley
Mahindra and Mahindra Ltd

Jan 21, 2019
GT-SUITE Conference
Pune, India
Introduction

➢ Energy dimensioning
 • Battery Capacity
 • Motor Power

➢ Early stage system model based design iterations
 • Reduced cost of product development
 • Robust products

A DOE study can be helpful to

1. Understand variations in vehicle performance over a range of powertrain sizes
2. Narrow down to feasible designs
Objective

Perform Design of Experiments (DOE) to analyse

Effects of the following factors:
- Battery Capacity (Ah rating)
- Motor Power (kW rating)
- Final Drive Ratio

To study the following responses:
- Range of Electric Vehicle over NEDC drive cycle
- Acceleration Performance (0-100 kmph time)
Objective

Multi Objective Pareto Optimization has been performed to:

- Maximize vehicle range
- Minimize acceleration time

- Performed to identify the optimal design points across the design space
Assumptions

➢ Battery Internal Resistance maps for Charge and Discharge cycles have been considered constant over the range of battery capacities

➢ Constant auxiliary load assumed for the entire drive cycle

➢ Motor efficiency was assumed to be constant throughout its operating range

➢ Standard atmospheric conditions where applicable
Model Setup:

- Battery Controller
- Brake Controller
- Driver Controls
- Vehicle
- DC-DC Converter
- Battery Pack
- Traction Motor
- Aux 12 V
Vehicle sub-assembly:

- Tire FR
- Brake-1
 - bs4
- Axles
- Environment
- Battery Mass
 - bs3
 - Brake-4
- Axle RR
- ToPart_6
- ToPart_14
- FromPart_11
- Vehicle Body
- Differential
 - bs2
 - Brake-3
 - Axle RL
 - Tires
 - Tire-FL
 - Axle FL
 - Brake-2
 - bs1
DOE Setup

➢ Latin Hypercube with 1000 Experiments

Setting up bounds

Generated DOE Configurations
Results: Relative Factor Effects for Vehicle Range

- **Vehicle Range (km)**
 - Battery Capacity
 - Motor Power
 - FDR

Graph Details
- Vertical axis: Vehicle Range (km)
- Horizontal axis: Relative Factor Effects
- Graph shows the impact of Battery Capacity, Motor Power, and FDR on Vehicle Range.
Results: Relative Factor Effects for Acceleration time

- Battery Capacity
- Motor Power
- FDR

Relative Factor Effects for Acceleration time (sec)
Results: Acceleration time - Individual Factor Effect

- Increase in battery pack capacity results in increase of the weight of a battery pack
- This leads to increase in the acceleration time
Results: Acceleration time - Individual Factor Effect

- For a fixed required speed, the Tractive effort will remain constant irrespective of the reduction ratio.
- Thus, FDR does not have a significant impact on the acceleration time.
Results: Vehicle Range - Metamodel quality

- Predicted Distance vs. Observed
- Upper %Err
- Lower %Err
- 0% Err
Results: Acceleration time - Metamodel quality
Multi Objective Optimization: Pareto Front

107 optimized design points identified by Pareto optimization

Region of interest
Design Space

40 optimized design points identified in our region of interest
Conclusions

➢ Multi objective Pareto Optimization was performed to arrive at the best possible design configurations for maximizing vehicle range and minimizing the acceleration time from 0-100 kmph
➢ 40 design configurations were identified which can be used for further analysis
➢ Distributed execution feature in GT-SUITE efficiently utilizes computer resources for quick exploration of multidimensional design space
➢ Using multiple solvers and cores, DOE run time was reduced to about 6 hours, Pareto optimization only took 30 seconds.
Future Scope

- Effect of transient auxiliary loads can be studied
- Effect of transient battery cell and motor characteristics can also be studied
- Further parameters like vehicle weight, coefficient of drag, frontal area can be used for optimization using the same methodology
Acknowledgements

Special thanks to the following people from Gamma Technologies for their consistent support

Mr. Anirudh Srinivasan
Mr. Dhaval Lodaya
Mr. Ramnik Singh

We are grateful to Dr. Akella Sarma from Mahindra Research Valley for his constant support and encouragement
Questions?
Thank you

Visit us at www.mahindra.com

Disclaimer

Mahindra & Mahindra herein referred to as M&M, and its subsidiary companies provide a wide array of presentations and reports, with the contributions of various professionals. These presentations and reports are for informational purposes and private circulation only and do not constitute an offer to buy or sell any securities mentioned therein. They do not purport to be a complete description of the markets conditions or developments referred to in the material. While utmost care has been taken in preparing the above, we claim no responsibility for their accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers are requested to use the information contained herein at their own risk. These presentations and reports should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or manner, in part or as a whole, without the express consent in writing of M&M or its subsidiaries. Any unauthorized use, disclosure or public dissemination of information contained herein is prohibited. Unless specifically noted, M&M or any of its subsidiary companies is not responsible for the content of these presentations and/or the opinions of the presenters. Individual situations and local practices and standards may vary, so viewers and others utilizing information contained within a presentation are free to adopt differing standards and approaches as they see fit. You may not repackate or sell the presentation. Products and names mentioned in materials or presentations are the property of their respective owners and the mention of them does not constitute an endorsement by M&M or its subsidiary companies. Information contained in a presentation hosted or promoted by M&M is provided “as is” without warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a particular purpose. M&M or its subsidiary companies assume no liability or responsibility for the contents of a presentation or the opinions expressed by the presenters. All expressions of opinion are subject to change without notice.