Refrigeration Modeling of a Frozen Carbonated Beverage Dispenser

November 5, 2018

Presented by:
Anthony Behe
FBD Partnership, LP

• Privately Held Limited Partnership
 – Based in San Antonio, TX
 – In business since 1996
 – Expanding operations in Asia

• Industry Leaders
 – Innovation
 – Technology
 – Market Share (>80% for FCB)
Who We Are

• Beverage Dispensing Machines
 – Frozen Carbonated Beverages (FCB)
 – Slush & Granita
 – Shakes & Smoothies

• Markets Served:
 – Convenience Stores
 – Movie Theaters
 – Resorts
 – Restaurants...
Why GT SUITE?

• Refrigeration Modeling
 – Entering new industries: shakes & smoothies, coffee, mixed drinks, etc.
 – Responsiveness to customer requests & customization
 – Adapting to regulatory requirements
 – Meeting changing customer expectations

• Product-Refrigerant Interaction
 – Dramatically varying load conditions
 – Alternative expansion gases
 – Improved control systems
Project Introduction

• Our Company’s First Introduction to GT SUITE
 – Learning how to use the software
 – Achieving a model that attains numerical convergence
 – Target: 5% correlation for suction & discharge conditions during initial pull-down and defrost cycles
Approach

- **Assumptions**
 - Calibration to Test Data
 - Parameters Tuning
 - FCB properties
 - Heat transfer properties of evaporator
 - Condenser air flow rate
 - Internal friction head loss multipliers in pipes
 - Calculated Values
 - Mass flow rates
 - Heat transfer in condenser during IPD
 - Discharge temperatures during defrost
 - Pressure drop in defrost loop
Approach

• Design and Simulation Process
 – Develop models of major components.
 – Calibrate individual components with test data.
 – Create open-loop subassemblies with controlled boundary conditions.
 – Adjust unknown, assumed parameters as necessary to get the best possible results.
 – Create a full, closed-loop assembly.
 – Continue adjusting unknown parameters until the best possible results are reached.
Challenges

• Unconventional Evaporator Design
 – Similar to a scraped-surface ice slurry generator
 – Heat ‘sink’ is limited in size, and capacity and temperature vary

• Pre-Existing Test Data
 – Non-ideal sensor placement
 – Potential setup errors

• Modes of Operation:
 – Initial Pull-Down (IPD)
 – Cyclic Freeze / Thaw
 – Defrost
Results - IPD

- Short-Range Fluctuations
 - PWM valve & overshoot
- Spike in Mass Flow Rate Early:
 - Possible condenser blockage or malfunction
 - Suspect data
Results - Defrost

- Temperature Match Issues
 - Heat transfer in the evaporator
 - Measurement issues
 - Sensor location
 - Calibration
- Pressure Match Issues
 - Pressure drop uncertainty
Observations & Takeaways

• **Modeling Challenges**
 - PWM Valve vs. TXV
 - Control issues (re: superheat target)
 - Mass flow rate and correction calculations
 - Condenser heat transfer values and air flow rates
 - Accurate modeling of FCB and its interaction with the barrel
 - Defrost system pressure drop

• **Results**
 - Questionable observations in test data
 - Overall results are not bad – generally within the target 5%
 - Velocity in barrel insufficient to push compressor oil up the channel
Next Steps

• Evaporator Modeling
 – Capture phase dynamics of 3 phase mixture
 • Expansion / “foaming” when ice forms
 • Changing solution concentration & properties due to ice formation
 – Freezing point, specific heat, latent heat, density...
 • CO2 dissolution & effervescence
 – Encompass product draw, solution injection, and syrup / FCB mixing
 – Model temperature gradient along the axis
 – Include dynamic heat transfer characteristics through ice film layer
Questions?