Co-simulation of Transmission Black Box Model & Vehicle Model

Harness Model Development

Isuzu Technical Center of America

Santhosh Pasupathi, MBD Engineer, ITCA
Aishwarya Shetty, MBD Engineer, ITCA
Santhosh Pasupathi
Model Based Development Engineer, Isuzu Technical Center of America

- Strong engineering professional with a Master's degree focused in Automotive Engineering from the University of Michigan
- Experienced Model Based Development Engineer with a demonstrated history of working in the automotive industry, skilled in ETAS - LABCAR, D - Space systems, Simulink, INCA, GT Modeling, IPG Truckmaker and Vehicle Testing & Validation

Aishwarya Shetty
Model Based Development Engineer, Isuzu Technical Center of America

- Graduated with Masters in Mechanical Engineering, University of Michigan- Ann Arbor
- Experience focused on model based development of commercial vehicles
- Actively working on system level vehicle model development and validation of Light & Medium-Heavy duty commercial vehicles (Diesel/Gas/CNG)
- Skilled in modeling platforms such as GT-Suite, IPG Truckmaker, MATLAB-Simulink, MATLAB-Advisor
MODEL BASED DEVELOPMENT

- Approach in which a system model is at the center of the development process
- Supports increasing product complexity and demands for cost/time efficiency
- Common platform development enables model sharing by different departments for different domains:
 - Computer simulation
 - Rapid prototyping
 - Test-bench-based hardware in the loop simulation

XiL - Model/Powertrain/Hardware in Loop

Introduction
1D – Map Based Model

- Can be built in very short time
- Requires less data for validation
- Faster than real time
- Low fidelity model
- This approach can be used for basic performance and fuel economy study with less input data for different powertrain configurations

Figure 2: Map Based Vehicle Architecture[1]
Introduction

1D – Detailed Model

- Higher fidelity model
- Accurate & repeatable results
- More data required for validation
- Real time simulations
- Used for Hardware-in-loop (HiL) testing

Figure 3: Detailed Vehicle Architecture
Virtual Vehicle Model Objectives

Fuel Economy

Performance

Component Sizing & Optimization

Controls System Development

Drivability

Aftertreatment Analysis
In this presentation, we will be discussing about “\textit{Fuel Economy & Performance simulation study conducted for the medium heavy duty (Class-6) Isuzu FTR truck using the Harness model developed for the detailed transmission black box-vehicle integration.}”

\textbf{Deliverables-}
- Fuel Economy & Performance Estimation

\textbf{Test Cases}
- GM City Cycle
- Interstate 55
- US Assumptions [GM City & Interstate 55]
- Acceleration & performance analysis

\textbf{Scope}
- Basic engine mapping tests were conducted to collect engine data
Map based Transmission

- User inputs the Shift Maps & TC Lockup clutch maps
- Coefficient of performance and Torque ratio maps are added externally as supplied by the supplier
- Map-based model - low fidelity

Map based Engine

- Mechanical Performance Maps
- Air Flow Map
- Fuel Flow Map
- Friction Map

Figure 5: Map Based Vehicle Architecture
Engine Model

- **Engine**: Isuzu- 5.2 ltr- turbocharged intercooled diesel

- **Power & Torque Characteristics**:
 - 215 HP @ 2500 RPM
 - 520 lb-ft @ 1600 RPM

- The following **engine maps** were used in the model:
 - Mechanical Performance Map
 - Friction Map
 - Fuel Consumption Map
 - Airflow Map

Figure 6: Engine Architecture in GT-Suite [1]
Transmission Model

- **Transmission**: Allison 2550 RDS - 6 speed automatic

- The black box model consists of:
 - Torque Converter
 - Transmission plant
 - Transmission Controller (TCM)
 - Characterization files

- The Transmission Controls model (TCM) is characterized using portions of a real TCM calibration file that most closely matches the customer requirement

- The plant model includes efficiencies suitable for systems analysis and fuel economy analysis

- Calibrations for the black box model are placed in an encrypted/protected Matlab-based file

- The overall simulation sample time is **0.001 seconds**

Figure 7: Transmission Black Box Model Architecture [2]

Image Ref: Allison Simulation Model Sharing Overview for Outside Customers
Vehicle Model Setup

- Net Engine Torque
- Engine Demand Torque
- Driver Demand Torque Percent
- Engine Peak Torque
- Engine Torque Limit
- Engine Speed
- Transmission output speed
- Attained Gear
- Torque Converter Speed Ratio
- Selected Shift Pattern
- Transmission output speed
- Achieved Vehicle Speed
- Road Load Torque
- Brake Road Load Torque
- Throttle Percent

Vehicle
Vehicle Model

- **Vehicle:** Isuzu-FTR Class 6 [25950 lbs. GVW]

- **Tire:** Continental HSR2 SA front tire & HDR2 rear tire

- **Final Drive Ratio:** 6.17

- **Total Road Load:**

 \[\text{Road Load Force} = (a + b \, v + cv^2) \]

 - **a** – Includes the effect of rolling resistance
 - **b** – Includes dependence of rolling resistance on velocity & drivetrain losses
 - **c** – Includes aerodynamic drag

Figure 8: Vehicle Model Architecture in GT-Suite [1]
Harness Model Setup

- Net Engine Torque
- Engine Demand Torque
- Driver Demand Torque Percent
- Engine Peak Torque

- Engine Torque Limit
- Engine Speed

- Achieved Vehicle Speed
- Road Load Torque
- Brake Road Load Torque
- Throttle Percent

- Attained Gear
- Torque Converter Speed Ratio
- Selected Shift Pattern
- Transmission output speed

: Output signals from GT-Suite and Input signals to Simulink

: Output signals from Simulink and Input signals to GT-Suite (feedback)
Co-simulation Model Setup

Allison Black Box Model (SIMULINK-master)

ITCA Vehicle Model (GT-Suite)

Co-simulation
Class 6- 25950 lbs. GVW- 6.17 FDR

<table>
<thead>
<tr>
<th>Tests</th>
<th>Harness model Simulation-Normalized*</th>
<th>Field Data-Normalized*</th>
<th>Difference (Field Data vs Detailed Simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10mph-Time required (s)</td>
<td>85.59</td>
<td>100.00</td>
<td>-14.4%</td>
</tr>
<tr>
<td>0-20mph-Time required (s)</td>
<td>98.26</td>
<td>100.00</td>
<td>-1.7%</td>
</tr>
<tr>
<td>0-30mph-Time required (s)</td>
<td>100.83</td>
<td>100.00</td>
<td>0.8%</td>
</tr>
<tr>
<td>0-40mph-Time required (s)</td>
<td>102.65</td>
<td>100.00</td>
<td>2.6%</td>
</tr>
<tr>
<td>0-50mph-Time required (s)</td>
<td>97.19</td>
<td>100.00</td>
<td>-2.8%</td>
</tr>
<tr>
<td>0-60mph-Time required (s)</td>
<td>98.85</td>
<td>100.00</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Max Speed- Speed achieved (mph)</td>
<td>100.00</td>
<td>100.00</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Tests</th>
<th>Harness model Simulation-Normalized*</th>
<th>Field Data-Normalized*</th>
<th>Difference (Field Data vs Detailed Simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM City (mpg)</td>
<td>99.26</td>
<td>100.00</td>
<td>0.7%</td>
</tr>
<tr>
<td>Interstate 55 (mpg)</td>
<td>100.00</td>
<td>100.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>US Assumptions (mpg)</td>
<td>99.52</td>
<td>100.00</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

*Values have been normalized

Figure 12: Comparison of Performance and Fuel Economy Results of co-simulated detailed transmission model and vehicle model Vs Field Testing Results

Class 6- 25950 lbs. GVW- 6.17 FDR

<table>
<thead>
<tr>
<th>Tests</th>
<th>Map Based Simulation-Normalized*</th>
<th>Field Data-Normalized*</th>
<th>Difference (Field Data vs Map based Simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10mph-Time required (s)</td>
<td>46.76</td>
<td>100.00</td>
<td>-53.2%</td>
</tr>
<tr>
<td>0-20mph-Time required (s)</td>
<td>70.00</td>
<td>100.00</td>
<td>-30.0%</td>
</tr>
<tr>
<td>0-30mph-Time required (s)</td>
<td>82.40</td>
<td>100.00</td>
<td>-17.6%</td>
</tr>
<tr>
<td>0-40mph-Time required (s)</td>
<td>88.68</td>
<td>100.00</td>
<td>-11.3%</td>
</tr>
<tr>
<td>0-50mph-Time required (s)</td>
<td>94.01</td>
<td>100.00</td>
<td>-6.0%</td>
</tr>
<tr>
<td>0-60mph-Time required (s)</td>
<td>99.29</td>
<td>100.00</td>
<td>-0.7%</td>
</tr>
<tr>
<td>Max Speed- Speed achieved (mph)</td>
<td>104.11</td>
<td>100.00</td>
<td>4.1%</td>
</tr>
<tr>
<td>GM City (mpg)</td>
<td>97.15</td>
<td>100.00</td>
<td>2.9%</td>
</tr>
<tr>
<td>Interstate 55 (mpg)</td>
<td>89.47</td>
<td>100.00</td>
<td>10.5%</td>
</tr>
<tr>
<td>US Assumptions (mpg)</td>
<td>94.27</td>
<td>100.00</td>
<td>5.7%</td>
</tr>
</tbody>
</table>

*Values have been normalized

- Time filter was used in map-based model to mimic the turbo lag at low engine speeds

Figure 12: Comparison of Performance and Fuel Economy Results of map based model Vs Field Testing Results
Results Comparison- Map-based Vs Detailed Simulation

Class 6- 25950 lbs. GVW- 6.17 FDR

<table>
<thead>
<tr>
<th>Tests</th>
<th>Map Based Simulation-Normalized*</th>
<th>Harness model Simulation-Normalized*</th>
<th>Field Data-Normalized*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10mph-Time required (s)</td>
<td>46.76</td>
<td>85.59</td>
<td>100.00</td>
</tr>
<tr>
<td>0-20mph-Time required (s)</td>
<td>70.00</td>
<td>98.26</td>
<td>100.00</td>
</tr>
<tr>
<td>0-30mph-Time required (s)</td>
<td>82.40</td>
<td>100.83</td>
<td>100.00</td>
</tr>
<tr>
<td>0-40mph-Time required (s)</td>
<td>88.68</td>
<td>102.65</td>
<td>100.00</td>
</tr>
<tr>
<td>0-50mph-Time required (s)</td>
<td>94.01</td>
<td>97.19</td>
<td>100.00</td>
</tr>
<tr>
<td>0-60mph-Time required (s)</td>
<td>99.29</td>
<td>98.85</td>
<td>100.00</td>
</tr>
<tr>
<td>Max Speed- Speed achieved (mph)</td>
<td>104.11</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>GM City (mpg)</td>
<td>97.15</td>
<td>99.26</td>
<td>100.00</td>
</tr>
<tr>
<td>Interstate 55 (mpg)</td>
<td>89.47</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>US Assumptions (mpg)</td>
<td>94.27</td>
<td>99.52</td>
<td>100.00</td>
</tr>
</tbody>
</table>

*Comparison of Performance and Fuel Economy Results of map based model Vs co-simulated detailed transmission model and vehicle model Vs Field Testing Results

*Values have been normalized
With the utilization of the Harness model developed for the integration of the Allison transmission black box model and the map-based vehicle model, the following objectives were achieved:

1.) Powertrain studies for FE & performance with different engine & transmission configurations

2.) Different Shift Strategy studies

3.) Final Drive Ratio Optimization

4.) Engine Power-Torque Curve studies to decide the configuration best suited for the vehicle

5.) GPS data was used to simulate the Isuzu standard cycles for durability testing [total miles= 812 approx.]
Benefits of Detailed Model Integration using Harness model:

- Reduces development time & cost
- Early stage of vehicle architectural studies can be conducted without prototyping
- Generates a more reliable final product through the use of computer models for system verification and testing
- Ability to conduct performance testing without hardware damage

Figure 13: Advantages of Detailed Model Integration
Next Steps:

- Integration of Engine FRM model with co-simulated transmission black box model and vehicle model

- Integration of detailed aftertreatment model with co-simulated engine FRM, transmission black box and vehicle model

- Real-time HiL testing of the integrated detailed vehicle model with physical hardware
Acknowledgement

Bruce Vernham
Technical Director, ITCA
Role: Mentor and technical advisor

Gerald Bergseiker
Senior Manager, PVRDE, ITCA
Role: Mentor and technical advisor

Yasuo Fukai
Chief Engineer, ITCA
Role: Engineering leadership and guidance

Joseph Conover
Simulation Engineer, Allison
Role: BB model supplier and support

John Sawa
Application Engineer, Allison
Role: Supplier and support

Burt Krehbiel
Senior Customer Integration & Application Engineer, Allison
Role: Supplier and support

Jonathan Zeman
Vehicle Applications Team Leader, Gamma Technologies
Role: Software Support

Dhaval Lodaya
Project Engineer - Electrified Vehicle Applications, Gamma Technologies
Role: Software Support
References

- Figure 1: ITCA
- Figure 2: Gamma Technologies
- Figure 3: ITCA
- Figure 4: ITCA
- Figure 5: Gamma Technologies
- Figure 6: Gamma Technologies
- Figure 7: Allison
- Figure 8: Gamma Technologies
- Figure 9: ITCA
- Figure 10: ITCA
- Figure 11: ITCA
- Figure 12: ITCA
- Figure 13: ITCA
- Figure 14: ITCA

- [1] GT-Suite Software
- [2] Allison Black Box Model sharing guidelines document
Thank You!