Cylinder and crankcase blow-by investigation using GT-SUITE

Alain LEFEBVRE
Fluid systems simulation expert

GT-SUITE European Conference – October 2018
Summary

01 INTRODUCTION

02 CRANKCASE BLOW-BY

03 STEADY-STATE SIMULATIONS

04 TRANSIENT RESULTS

05 CONCLUSIONS
INTRODUCTION : BLOW-BY
What is blow-by...

- The pressure into the combustion chamber causes fuel, air, moisture, and oil to be forced past the rings into the crankcase.

- These are “blow-by gases”
What is blow-by...

Blow-by sources

1. Gas ring leakage between the piston and the cylinder liner: 20 to 70 l/min
2. Journal bearings of the turbocharger: 16 l/min (new) to 20 l/min (aged)
3. Valve stem seals: 5 to 10 l/min
4. Vacuum pump: 5 l/min (steady) to 70 l/min (peak – severe braking)

![Pie chart showing blow-by sources](chart.png)

- Vacuum pump: 0-5% (steady) / 70-80% (transient severe braking)
- Valve stem seals: 5 to 10%
- Turbocharger: 15 to 30%
- Gas ring leakage: 70 to 80%
Blow-by regulation

Necessary to extract the blow-by gases and regulate crankcase pressure to guarantee acceptable crankcase pressure value

Reliability aspects
- Avoid oil leakage through the lip seals
- Avoid excessive oil consumption by blow-by flow rate increase

Regulation aspects
- Regulation 1974: toxic gases release in the atmosphere is forbidden
- Regulation 1996: crankcase pressure < 0 mbar on gasoline engines on 3 operating points.
Blow-by circuit functionalities

- Blow-by gases are put back to the intake to be burned into the cylinder
- Different architectures possible according to the type of engine
- Blow-by gases go back to the intake thanks to a low pressure (before the compressor of the turbocharger or after the intake throttle)

<table>
<thead>
<tr>
<th></th>
<th>Diesel</th>
<th>NA gasoline</th>
<th>TC gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td>PRV (Pressure Regulation Valve) = pressure limitation</td>
<td>orifices</td>
<td>orifice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- orifice</td>
<td>- One way valve</td>
<td>- orifice</td>
</tr>
</tbody>
</table>

DRIVE THE CHANGE
CRANKCASE BLOW-BY MODELLING
Engine characteristics

<table>
<thead>
<tr>
<th>Engine characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine displacement</td>
<td>2.0 liter / Diesel</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>4</td>
</tr>
<tr>
<td>Engine power</td>
<td>150 kW at 4000 rpm</td>
</tr>
<tr>
<td>Engine torque</td>
<td>400 Nm at 1750 rpm</td>
</tr>
<tr>
<td>Turbocharging system</td>
<td>VGT</td>
</tr>
</tbody>
</table>
Entire crankcase, cylinder head and blow-by circuit were modelled: volumes, lengths, sections,... in order to model pressure losses and flow rate.
Crankcase blow-by

- The geometry of the ventilation system was discretized using GEM3D
Crankcase blow-by

The PRV and fresh air valves were modeled using the Pressure / massflow rate characteristic curves of these components.

Mass flow rate regulated by a PID to respect the PRV characteristics.
Blow-by circuit modelling

Blow-by sub-model

Engine model

Cylinder head

stacks

Crankcase

Engine crankcase blow-by model

PRV_vane
Aim of the study
Crankcase blow-by – aim of the study

- Fatigue behavior of the oil drain valve due to pulsating flow was studied
- Maximum pull out pressure: 500 mbar
- Steady-state and transient simulations were performed

→ Calculation of the number of open/close occurrences for the definition of reliability endurance test rig for the oil drain valve
STEADY STATE SIMULATIONS
Steady-state results – full load comparison

- Hole diameter between cylinders and crankcase was only adjusted at 4000 rpm full load according to test results
Crankcase blow-by – entire full load curve

Orifice diameter was kept constant
(Value at 4000rpm)

- Good correlation between calculations and test bench results at other engine speeds
Crankcase blow-by – 4000 rpm

- Amplitude of 75 mbar – maximum at the PRV inlet
- Mainly H2 harmonics due to the pistons displacements in the crankcase
Crankcase blow-by – steady-state conclusions

- Amplitude of the pressure pulsations are high
- Mainly H2 harmonics due to the piston displacement
- But they are lower than the limit acceptable by the membrane
- Good correlation with tests (75 mbar / 70 mbar)
TRANSIENT RESULTS
Crankcase blow-by – transient simulations

- Blow-by simulations were performed under transient conditions
- Tip-in simulations at constant speed (2000 rpm) from 2 bar BMEP to full load
- Opening time of the PRV valve difficult to model with a PID: replaced by opening ramps (duration from 0.3 s to 1.5 s)
Crankcase blow-by – transient simulations at 2000rpm

- No effect of the blow-by on torque
Crankcase blow-by – transient simulations at 2000rpm

Turbine rack position

Time [s]

Turbine rack

0.00 2.50 5.00 7.50 10.00 12.50 15.00

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

0.3s 0.6s 0.9s 1.2s 1.5s

Rack Position
Crankcase blow-by – transient simulations at 2000rpm

Opening from the part load initial opening (10 mm) to the full load diameter at 2000rpm (~ 8.1mm)

Diameter necessary at 2000 rpm full load
Crankcase blow-by – transient simulations at 2000rpm

- Pressure upstream PRV decreases
- Minimum relative pressure is -10mbar
Crankcase blow-by – transient simulations at 2000rpm

- Blow-by mass flow rate peak is higher in transient (75 l/min) than in steady (62.9 l/min)
- Poor effect of the PRV opening time
Crankcase blow-by – transient simulations at 2000rpm

- Amplitude of the instantaneous pressures higher than in steady state
- Poor effect of the PRV opening time

Instantaneous pressure before PRV

- Amplitude of 37 mbar / 10 mbar average
- Steady state: 31 mbar at 2000 tr/min

37 mbar
CONCLUSIONS
Conclusions

- Simulations were performed on different engines and blow-by configurations:
 - Diesel turbocharged engine
 - Gasoline turbocharged engine
 - Gasoline NA engine

- Good correlation with experiments

- Simulation time: 5 hours for the entire full load curve on workstation

- Crankcase blow-by calculations can be used to calculate the flow inside the entire blow-by circuit

- Give interesting informations to dimension the blow-by components (PRV valve, ventilation, location of the blow-by inlet,...)
Without ventilation

<table>
<thead>
<tr>
<th>N</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3500</th>
<th>4000</th>
<th>4500</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Deb_BBy(l/min)</td>
<td></td>
</tr>
<tr>
<td>15,52</td>
<td>18,53</td>
<td>15,54</td>
<td>13,35</td>
<td>11,15</td>
<td>8,95</td>
<td>8,23</td>
<td>7,67</td>
<td>7,25</td>
<td>6,98</td>
<td>6,75</td>
<td>6,50</td>
</tr>
<tr>
<td>16,18</td>
<td>17,17</td>
<td>16,64</td>
<td>15,33</td>
<td>14,89</td>
<td>1,78</td>
<td>1,78</td>
<td>1,86</td>
<td>1,94</td>
<td>2,02</td>
<td>2,11</td>
<td>2,22</td>
</tr>
<tr>
<td>20,67</td>
<td>19,61</td>
<td>20,34</td>
<td>20,15</td>
<td>20,21</td>
<td>23,74</td>
<td>19,76</td>
<td>19,47</td>
<td>19,25</td>
<td>19,21</td>
<td>19,23</td>
<td>19,25</td>
</tr>
<tr>
<td>22,81</td>
<td>21,43</td>
<td>23,37</td>
<td>23,41</td>
<td>23,58</td>
<td>31,19</td>
<td>23,60</td>
<td>23,55</td>
<td>22,98</td>
<td>22,30</td>
<td>21,81</td>
<td>21,27</td>
</tr>
<tr>
<td>22,28</td>
<td>22,89</td>
<td>21,41</td>
<td>21,64</td>
<td>21,93</td>
<td>24,04</td>
<td>22,12</td>
<td>22,80</td>
<td>21,53</td>
<td>20,64</td>
<td>18,96</td>
<td>13,22</td>
</tr>
<tr>
<td>18,91</td>
<td>21,77</td>
<td>13,26</td>
<td>13,17</td>
<td>9,47</td>
<td>23,03</td>
<td>10,30</td>
<td>15,45</td>
<td>8,11</td>
<td>8,84</td>
<td>9,11</td>
<td>10,76</td>
</tr>
<tr>
<td>14,05</td>
<td>13,98</td>
<td>10,48</td>
<td>7,84</td>
<td>6,20</td>
<td>12,02</td>
<td>7,14</td>
<td>13,29</td>
<td>13,82</td>
<td>13,85</td>
<td>12,91</td>
<td>12,11</td>
</tr>
<tr>
<td>12,22</td>
<td>18,17</td>
<td>17,67</td>
<td>16,24</td>
<td>14,17</td>
<td>1,78</td>
<td>1,78</td>
<td>1,86</td>
<td>1,94</td>
<td>2,02</td>
<td>2,11</td>
<td>2,22</td>
</tr>
<tr>
<td>16,18</td>
<td>19,61</td>
<td>20,34</td>
<td>20,15</td>
<td>20,21</td>
<td>23,74</td>
<td>19,76</td>
<td>19,47</td>
<td>19,25</td>
<td>19,21</td>
<td>19,23</td>
<td>19,25</td>
</tr>
<tr>
<td>20,67</td>
<td>21,43</td>
<td>23,37</td>
<td>23,41</td>
<td>23,58</td>
<td>31,19</td>
<td>23,60</td>
<td>23,55</td>
<td>22,98</td>
<td>22,30</td>
<td>21,81</td>
<td>21,27</td>
</tr>
<tr>
<td>22,81</td>
<td>22,89</td>
<td>21,41</td>
<td>21,64</td>
<td>21,93</td>
<td>24,04</td>
<td>22,12</td>
<td>22,80</td>
<td>21,53</td>
<td>20,64</td>
<td>18,96</td>
<td>13,22</td>
</tr>
<tr>
<td>18,91</td>
<td>21,77</td>
<td>13,26</td>
<td>13,17</td>
<td>9,47</td>
<td>23,03</td>
<td>10,30</td>
<td>15,45</td>
<td>8,11</td>
<td>8,84</td>
<td>9,11</td>
<td>10,76</td>
</tr>
<tr>
<td>14,05</td>
<td>13,98</td>
<td>10,48</td>
<td>7,84</td>
<td>6,20</td>
<td>12,02</td>
<td>7,14</td>
<td>13,29</td>
<td>13,82</td>
<td>13,85</td>
<td>12,91</td>
<td>12,11</td>
</tr>
<tr>
<td>12,22</td>
<td>18,17</td>
<td>17,67</td>
<td>16,24</td>
<td>14,17</td>
<td>1,78</td>
<td>1,78</td>
<td>1,86</td>
<td>1,94</td>
<td>2,02</td>
<td>2,11</td>
<td>2,22</td>
</tr>
<tr>
<td>16,18</td>
<td>19,61</td>
<td>20,34</td>
<td>20,15</td>
<td>20,21</td>
<td>23,74</td>
<td>19,76</td>
<td>19,47</td>
<td>19,25</td>
<td>19,21</td>
<td>19,23</td>
<td>19,25</td>
</tr>
<tr>
<td>20,67</td>
<td>21,43</td>
<td>23,37</td>
<td>23,41</td>
<td>23,58</td>
<td>31,19</td>
<td>23,60</td>
<td>23,55</td>
<td>22,98</td>
<td>22,30</td>
<td>21,81</td>
<td>21,27</td>
</tr>
<tr>
<td>22,81</td>
<td>22,89</td>
<td>21,41</td>
<td>21,64</td>
<td>21,93</td>
<td>24,04</td>
<td>22,12</td>
<td>22,80</td>
<td>21,53</td>
<td>20,64</td>
<td>18,96</td>
<td>13,22</td>
</tr>
<tr>
<td>18,91</td>
<td>21,77</td>
<td>13,26</td>
<td>13,17</td>
<td>9,47</td>
<td>23,03</td>
<td>10,30</td>
<td>15,45</td>
<td>8,11</td>
<td>8,84</td>
<td>9,11</td>
<td>10,76</td>
</tr>
<tr>
<td>14,05</td>
<td>13,98</td>
<td>10,48</td>
<td>7,84</td>
<td>6,20</td>
<td>12,02</td>
<td>7,14</td>
<td>13,29</td>
<td>13,82</td>
<td>13,85</td>
<td>12,91</td>
<td>12,11</td>
</tr>
</tbody>
</table>

With ventilation

<table>
<thead>
<tr>
<th>N</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3500</th>
<th>4000</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Deb_BBy(l/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>30,99</td>
<td>34,88</td>
<td>32,95</td>
<td>35,98</td>
<td>38,38</td>
<td>40,17</td>
<td>42,25</td>
<td>44,32</td>
<td>46,25</td>
<td>48,08</td>
</tr>
<tr>
<td>1250</td>
<td>32,88</td>
<td>36,76</td>
<td>34,84</td>
<td>37,87</td>
<td>40,27</td>
<td>42,06</td>
<td>44,14</td>
<td>46,21</td>
<td>48,04</td>
<td>50,01</td>
</tr>
<tr>
<td>1500</td>
<td>34,32</td>
<td>38,20</td>
<td>36,28</td>
<td>39,31</td>
<td>41,71</td>
<td>43,50</td>
<td>45,68</td>
<td>47,75</td>
<td>49,68</td>
<td>51,65</td>
</tr>
<tr>
<td>1750</td>
<td>35,76</td>
<td>39,64</td>
<td>37,72</td>
<td>40,75</td>
<td>43,14</td>
<td>44,93</td>
<td>47,11</td>
<td>49,18</td>
<td>51,11</td>
<td>53,08</td>
</tr>
<tr>
<td>2000</td>
<td>37,20</td>
<td>41,08</td>
<td>39,16</td>
<td>42,19</td>
<td>44,58</td>
<td>46,37</td>
<td>48,55</td>
<td>50,63</td>
<td>52,56</td>
<td>54,53</td>
</tr>
<tr>
<td>2500</td>
<td>39,59</td>
<td>43,47</td>
<td>41,55</td>
<td>44,58</td>
<td>46,97</td>
<td>48,76</td>
<td>50,94</td>
<td>53,12</td>
<td>55,05</td>
<td>57,02</td>
</tr>
<tr>
<td>3000</td>
<td>41,91</td>
<td>45,79</td>
<td>43,87</td>
<td>46,90</td>
<td>49,29</td>
<td>51,08</td>
<td>53,26</td>
<td>55,44</td>
<td>57,37</td>
<td>59,34</td>
</tr>
<tr>
<td>3500</td>
<td>44,19</td>
<td>48,07</td>
<td>46,15</td>
<td>49,18</td>
<td>51,57</td>
<td>53,36</td>
<td>55,54</td>
<td>57,72</td>
<td>59,65</td>
<td>61,62</td>
</tr>
<tr>
<td>4000</td>
<td>46,45</td>
<td>50,33</td>
<td>48,41</td>
<td>51,44</td>
<td>53,83</td>
<td>55,62</td>
<td>57,80</td>
<td>59,98</td>
<td>61,91</td>
<td>63,89</td>
</tr>
<tr>
<td>5000</td>
<td>49,76</td>
<td>53,64</td>
<td>51,72</td>
<td>54,75</td>
<td>57,14</td>
<td>58,93</td>
<td>61,11</td>
<td>63,29</td>
<td>65,27</td>
<td>67,25</td>
</tr>
<tr>
<td>6000</td>
<td>53,06</td>
<td>56,94</td>
<td>55,02</td>
<td>58,05</td>
<td>60,44</td>
<td>62,23</td>
<td>64,41</td>
<td>66,59</td>
<td>68,57</td>
<td>70,55</td>
</tr>
</tbody>
</table>

Comparison with/without crankcase ventilation (GT-POWER)

blow-by mass flow rates map and crankcase pressure with GT-POWER

Comparison with/without crankcase ventilation (GT-POWER)
Other applications: blow-by circuit noise reduction

Noise peaks during engine accelerations

- A noise frequency of 240 Hz was identified
- Excited by H6 (2500rpm) and H8 (1800rpm) of the engine.
- An Helmholtz resonator was used to fade the noise (-8dB)

Noise coming from the blow-by circuit has been reduced thanks to GT-POWER calculations.
Conclusions

Next steps

• Cylinder blow-by model to be used to calculate the blow-by flow rate

• Blow-by coming from the turbocharger (labyrinth seal)
Thank you for your attention!