Case study on Selective catalytic reduction (SCR) performance improvement over legislative engine cycles using 1D simulation

Presented by
Mohak Samant & Hitesh Chaudhari

Under the guidance of
Dr. N. H. Walke

January 2018
The Automotive Research Association of India, Pune
Agenda

- Objective
 - SCR model calibration work flow
 - Standalone SCR modelling
 - Model calibration steps
 - Prediction for legislative engine test cycles
 - Model application for catalyst light-off study
 - Closing remarks
- Summary
Objective

- SCR catalyst NO\textsubscript{X} conversion performance improvement over legislative steady state and transient engine test cycles within defined boundaries of optimisation parameters for heavy duty Diesel engine considering BS-VI emission norms
Agenda

- Objective
- SCR model calibration work flow
- Standalone SCR modelling
- Model calibration steps
- Prediction for legislative engine test cycles
- Model application for catalyst light-off study
- Closing remarks
- Summary
SCR modeling workflow

- **SCR standalone model building:**
 Chemical kinetics from reference literature
 Basic geometric data from catalyst supplier

- **Experimental data acquisition:**
 Engine and synthetic gas bench test data

- **Model calibration using experimental data:**
 Storage modelling correction
 NO\(_x\) conversion modelling correction

- **Model prediction for legislative engine cycles:**
 Steady state (WHSC)
 Transient cycles (WHTC)

- **Model application for concept evaluation:**
 Variation of catalyst sizing,
 Catalyst light off study etc.
Agenda

- Objective
- SCR model calibration work flow
 - Standalone SCR modelling
 - Model calibration steps
 - Prediction for legislative engine test cycles
 - Model application for catalyst light-off study
- Closing remarks
- Summary
SCR standalone model building approach

- Flexible and quick
- Quasi steady approach
Agenda

- Objective
- SCR model calibration work flow
- Standalone SCR modelling
- Model calibration steps
- Prediction for legislative engine test cycles
- Model application for catalyst light-off study
- Closing remarks
- Summary
Model calibration: Literature data

Standalone SCR Model work based on literature data:

- Initial reaction kinetics from GT-suite examples
- Data from literature for Cu-Zeolite catalyst
- Reaction kinetics tuned
- Advanced statistical optimisation tools

Work presented in GT conference 2017, Pune, India
Active site density, Adsorption and Desorption rate constants are calibrated

Calibrated rate constants to be validated for NH$_3$ step feed on engine test bench
Model calibration: SGTB data - NO\textsubscript{X} Conversion

Test Conditions:
- GHSV = 84K
- ANR = 1
- NO\textsubscript{X} = 500 PPM
Model calibration: Engine test bed

<table>
<thead>
<tr>
<th>Engine specifications</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cylinders</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Heavy duty Diesel</td>
</tr>
<tr>
<td>Target emission level</td>
<td>BS-VI</td>
</tr>
<tr>
<td>NO\textsubscript{x} control strategy</td>
<td>SCR only (No EGR)</td>
</tr>
<tr>
<td>Aftertreatment layout</td>
<td>DOC + cDPF + SCR</td>
</tr>
<tr>
<td>SCR volume (l)</td>
<td>~ 10</td>
</tr>
<tr>
<td>SCR catalyst</td>
<td>Cu-Zeolite</td>
</tr>
</tbody>
</table>

Model considerations:
- Standalone SCR model
- DPF out data mapped as inlet BC to SCR
- Uniform Urea decomposition
- NH\textsubscript{3} mapped as inlet BC

Test Engine layout

- Temperature
- Pressure
- NO, NO\textsubscript{2}, CO, HC, CO\textsubscript{2}
- O\textsubscript{2}, H\textsubscript{2}O
- Mass/Volume flow rate

- Temperature
- Pressure
- NO, NO\textsubscript{2}, CO, HC, CO\textsubscript{2}

- Temperature
- Pressure
- NO, NO\textsubscript{2}

- Temperature
- Pressure
- NO, NO\textsubscript{2}, O\textsubscript{2}, H\textsubscript{2}O
- NH\textsubscript{3}

- Temperature
- Pressure
- NO, NO\textsubscript{2}, O\textsubscript{2}, H\textsubscript{2}O
- NH\textsubscript{3}
Model calibration: Engine test data - steady state

- $T_{\text{SCR\,in}} = 367(\text{degC})$
- $SV = 24K(\text{h}^{-1})$

- NH$_3$ Storage modelling calibrated (step feed)
- NO$_x$ conversion reaction kinetics validated
- Entire engine operation window covered
Agenda

- Objective
- SCR model calibration work flow
- Standalone SCR modelling
- Model calibration steps
- Prediction for legislative engine test cycles
- Model application for catalyst light-off study
- Closing remarks
- Summary
Model calibration: Engine test cycle

- Ramp mode engine test cycle
- Ammonia to NO_x ratio of unity
- Transient test cycle
- Model captures transient trends
Agenda

- Objective
- SCR model calibration work flow
- Standalone SCR modelling
- Model calibration steps
- Prediction for legislative engine test cycles
- Model application for catalyst light-off study
- Closing remarks
- Summary
Dosing starts when the Temperature crosses trigger temperature (~500 sec)

NO\textsubscript{X} conversion during light-off period is absent

Quick light-off is required for better cumulative NO\textsubscript{X} reduction efficiency
WHTC: Thermal management

- Conversion efficiency of the catalyst alone is not sufficient to meet targeted cycle emission

- With advanced light off temperature profile
Agenda

- Objective
- SCR model calibration work flow
- Standalone SCR modelling
- Model calibration steps
- Prediction for legislative engine test cycles
- Model application for catalyst light-off study
- Closing remarks
- Summary
Closing remarks

- NH$_3$ dosing starts at threshold temperature
- Initial 500 seconds virtually no NO$_x$ conversion due to low temperature (no dosing)
- Reducing light off period significantly reduces cycle averaged NO$_x$ emission
- Thermal management demands hardware changes on engine
- Exhaust gas temperature could be controlled by following ways:
 - Exhaust throttle valve (ETV)
 - Air to fuel ratio control (Turbo charger)
Agenda

- Objective
- SCR model calibration work flow
- Standalone SCR modelling
- Model calibration steps
- Prediction for legislative engine test cycles
- Model application for catalyst light-off study
- Closing remarks
- Summary
Summary

- Model built based on literature data is validated against physical test data
- Model calibration with NH$_3$ step feed experiments performed on engine test bed
- Model prediction is validated for transient test cycle operation
- Catalyst light-off study over transient test cycle using calibrated model
- Hardware change suggestion on physical engine to improve cycle average NO$_X$ conversion
Future work direction

- Performance comparison study of Zeolite and Vanadium catalysts over engine test cycles
- Modelling of Urea dosing system and NH$_3$ conversion efficiency
- Engine performance optimisation for improved thermal management and validation
- Predictive Engine model plus after-treatment modelling
- Test data validation for Vanadium catalyst
We would like to thank Mr. N. V. Marathe (HoD PTE), Dr. N. H. Walke, Mr. S. A. Gothekar and our colleagues for supporting us through this study. We specially thank Mr. Ryan Dudgeon, Mr. Dominik Artukovic from Gamma Technologies and Mr. Mangesh Dusane from ESI for their continual support and fruitful suggestions.

Mr. Mohak Samant
samant.edl@araiindia.com

Mr. Hitesh Chaudhari
chaudhari.edl@araiindia.com

Dr N.H. Walke
walke.edl@araiindia.com

THANK YOU!!