Rankine system design for commercial vehicle application with GT-SUITE
Agenda

1. Context
2. Vehicle level analysis
3. System level analysis
4. Conclusions
Introduction
Energy balance on a truck

FUEL 100%

To Crankshaft 43%
To Cooling: 23%
To Exhaust 34%
To Wheels 40%
EATS out 23%

Rejected to air 23%

Drivetrain losses 1.5%
Auxiliaries 1.5%

Turbo charger 8%
Thermal losses 3%

About 60% of fuel energy rejected as thermal energy!
Introduction

Rankine basic layout

Heat source: Exhaust gases

Electric or mechanic

Heat sink: Engine coolant or ambient air

Rankine main benefit is the low pumping work compared to expansion work

\[\eta_{th} = \frac{\dot{W}_{exp} - \dot{W}_{pump}}{Q_{in}} \]
Introduction
System engineering method and tools

1. Analyze Exhaust and cooling flux
 • Mission profile analysis on a reference trip
 • Define operating condition

2. Internal functional analysis
 • Define proper design variables and constraints
 • Study different architectures (heat sink / fluid / heat source)
 • Build component specifications

3. Optimisation of \(\frac{\text{system cost}}{\text{Power output}} \) ratio
 • Select best component technologies
 • Optimize design parameters to lower system cost
 • Validate system performances

GT-Suite is completely integrated in our system engineering process
Agenda

1. Context

2. Vehicle level analysis

3. System level analysis

4. Conclusions
Vehicle analysis

Vehicle configuration

Typical long haul truck configuration – Full load (40T)

<table>
<thead>
<tr>
<th>Engine: DAF Paccar Mx375</th>
<th>Truck</th>
<th>Tractor</th>
<th>Trailer + Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>7000</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>Max Power</td>
<td>375 kW @ 1500-1900 rpm</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Max Torque</td>
<td>2500 Nm @ 1000-1500 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGR</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine Torque / Power

![Engine Torque / Power graph]

Engine Specifications

- **Engine:** DAF Paccar Mx375
- **Displacement:** 6 Cylinders 12.9 L
- **Max Power:** 375 kW @ 1500-1900 rpm
- **Max Torque:** 2500 Nm @ 1000-1500 rpm
- **EGR:** No
Objective: generate exhaust and cooling boundaries conditions
Mission profile analysis main objective is to answer the following questions:

- What is recovery potential on my journey => exhaust temperature and energy
- What is cooling potential of my cold source => Cooling temperature and max cooling capacity

Vehicle analysis

Interface analysis

Rankine operating conditions bounded by exhaust energy and cooling capacity
Vehicle analysis
Complete vehicle model

Cooling circuit
• Radiator performances
• Coolant flow

Engine
• BSFC
• Exhaust temperature
• Exhaust flow
• Cooling heat rejection

Exhaust System
• Thermal inertia
• Thermal losses

Engine characterized on test bench to build full vehicle model

CVE test cell
External functional analysis

Exhaust layout

- Exhaust boiler always located downstream Exhaust Aftreatment System (EATS)
 - Temperature mandatory for DOC / SCR conversion efficiency
- EGR not always present on OEM architecture
 - Economical interest: EGR rates / exchanger cost
 - Main issue: guaranty at any time EGR cooling function

No EGR available on our engine: “without EGR” case studied
External functional analysis

Cooling circuit architecture

<table>
<thead>
<tr>
<th>Engine coolant</th>
<th>Engine coolant</th>
<th>Engine coolant</th>
<th>Air Direct Air cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td>Parallel</td>
<td>Dedicated loop</td>
<td></td>
</tr>
<tr>
<td>$T_{\text{cool}} = 80^\circ\text{C}$</td>
<td>$T_{\text{cool}} = 60^\circ\text{C}$</td>
<td>$T_{\text{cool}} = 40^\circ\text{C}$</td>
<td>$T_{\text{cool}} = 25^\circ\text{C}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Air flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RADIATOR</td>
</tr>
</tbody>
</table>

- Condenser upstream water pump
- Condenser parallel to radiator
- Condenser in auxiliary cooling loop
- Condenser upstream front end radiator

- Easy integration
- Higher cooling potential
- Do not impact engine
- Lowest cooling temperature

- Increase main circuit pressure drop
- Require additional pump
- Architecture not yet available
- Increase radiator inlet temperature CaC outlet temperature at high load

The lower the cold source temperature, the lower the condensing pressure
Exhaust energy distribution vs exhaust power is the key criteria to select nominal point
Agenda

1. Context
2. Vehicle level analysis
3. System level analysis
4. Conclusions
Simulation will help us to define component ideal architecture and specifications.
Simulation helps us to understand physics and define realistic boiler specifications.
System level analysis

Expander selection

<table>
<thead>
<tr>
<th></th>
<th>Scroll</th>
<th>Piston</th>
<th>Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine type</td>
<td>Volumetric / Continuous flow</td>
<td>Volumetric / Alternative flow</td>
<td>Dynamic / Continuous flow</td>
</tr>
<tr>
<td>Pressure ratio range</td>
<td>Up to 7</td>
<td>> 20 (design dependent)</td>
<td>Up to 10</td>
</tr>
<tr>
<td>Efficiencies range</td>
<td>50% – 70%</td>
<td>50% - 70%</td>
<td>70%-80%</td>
</tr>
<tr>
<td>Pro</td>
<td>Liquid phase proof Low speed (engine coupling)</td>
<td>Liquid phase proof (limited) Low speed (engine coupling)</td>
<td>No lubrication in fluid compact</td>
</tr>
<tr>
<td>Cons</td>
<td>Lubrication Friction</td>
<td>Lubrication compression work Friction</td>
<td>Need dry fluid or complex control High speed (complex coupling)</td>
</tr>
<tr>
<td>Intrinsic limitations</td>
<td>Low efficiency at high pressure ratio (leakages)</td>
<td>Low efficiency at low pressure ratio</td>
<td>Rotor specific speed / nozzle outlet Mach number</td>
</tr>
<tr>
<td>Modelling technique</td>
<td></td>
<td>Volumetric efficiency and Isentropic efficiency map</td>
<td>Calibrated Nozzle and isentropic efficiency map</td>
</tr>
</tbody>
</table>

Expander matching is a key design criteria for system design
System Internal Architecture

Architecture study

- **Alcohols favorable to each cooling architecture**
 - Piston seems to be favorable because of high pressure ratio
 - Fluid 1 could be a good alternative because it has better performances at low temperature. Expander selection opened

- **Organic fluid only interesting with direct air cooling (low temp cold source)**
 - Scroll or single stage turbine are well adapted (compactness)
 - Fluid 2 increase a little bit performances but still interesting only for direct cooling
 - Performances of these fluids can be increased with a regenerator

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Cooling architecture</th>
<th>Fuel saving %</th>
<th>Expander rating</th>
<th>Fluid properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pessimistic</td>
<td>optimistic</td>
<td>Flexibility</td>
</tr>
<tr>
<td>Ethanol</td>
<td>direct</td>
<td>4.24</td>
<td>5.69</td>
<td>15.92</td>
</tr>
<tr>
<td>Ethanol</td>
<td>parallel</td>
<td>4.24</td>
<td>6.09</td>
<td>15.92</td>
</tr>
<tr>
<td>Ethanol</td>
<td>serial</td>
<td>3.63</td>
<td>5.23</td>
<td>12.64</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>direct</td>
<td>5.40</td>
<td>7.86</td>
<td>15.92</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>parallel</td>
<td>4.17</td>
<td>6.13</td>
<td>10.45</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>serial</td>
<td>3.14</td>
<td>4.68</td>
<td>6.12</td>
</tr>
<tr>
<td>R245fa</td>
<td>direct</td>
<td>3.28</td>
<td>4.94</td>
<td>5.99</td>
</tr>
<tr>
<td>R245fa</td>
<td>parallel</td>
<td>2.15</td>
<td>3.33</td>
<td>3.28</td>
</tr>
<tr>
<td>R245fa</td>
<td>serial</td>
<td>1.21</td>
<td>1.95</td>
<td>1.99</td>
</tr>
<tr>
<td>DR2</td>
<td>direct</td>
<td>3.66</td>
<td>5.50</td>
<td>13.54</td>
</tr>
<tr>
<td>DR2</td>
<td>parallel</td>
<td>2.51</td>
<td>3.90</td>
<td>6.30</td>
</tr>
<tr>
<td>DR2</td>
<td>serial</td>
<td>1.72</td>
<td>2.78</td>
<td>3.72</td>
</tr>
<tr>
<td></td>
<td>Agenda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Context</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vehicle level analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>System level analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conclusions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This methodology has been applied to build a demo truck with industrial partners.

More information at 12th international MTZ Conference on Heavy Duty Engines, Augsburg 28/11 – 29/11 2017

- Rankine cycle, from thermodynamic equations to road test (ATZ 2017)

Faurecia EHPG DemoTruck

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck type</td>
<td>Renault Truck T460</td>
</tr>
<tr>
<td>Engine</td>
<td>DTI 11L</td>
</tr>
<tr>
<td>Working Fluid</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Expander</td>
<td>Exoes EVE (swashplate Piston)</td>
</tr>
</tbody>
</table>
Summary

- FCM develops engineering method & tools to study and size Rankine system for a long haul truck
 - Full system model
 - Test beds
 - Vehicle measurements

- Mission profile analysis to identify exhaust / cooling / mechanical boundaries
 - Proof of concept
 - Component specifications

- GT-Suite completely integrated in our model-based design process
 - Support control software development
 - Dynamic modelling to reproduce road test and improve system