All-Inclusive Simulation Process Development of Piston Pumps with GT-SUITE

Guoqi Chen
Virtual Product Development
November 6, 2017
Agenda

• About Caterpillar
• Project background
• Modeling strategies
• Piston pump models
• Modeling approach
• Simulation validation
• Summary
Products and Industries
Virtual Product Development (VPD)

VPD is a product development approach driven by **physics-based simulation**

Simulation Powered Product Development

- **Velocity**
 Products delivered to market in months rather than years

- **Insight**
 Full understanding of all tradeoffs made during concept phase

- **Customer**
 Global, real world applications fully understood

- **Confidence**
 Simulation is trusted source for information

- **Innovation**
 Fully explored alternatives provide superior innovation

- **Process**
 Imbedded simulation seamlessly drive decision making
Project Background

• Modeling process development for machine cold start

Hydraulic pumps (piston & gear) simulation is one of the major elements in whole machine cold start simulation process.

Caterpillar: Non-Confidential
Machine Cold Start

• Sub-systems in machine

Focus on:
- Parasitic loads
- Power losses
Simulation Process Development

• Modeling strategies

- High Fidelity & Physics-based
- Multi-domain System Modeling
- Dynamic & Transient Analysis
- Model Correlation & Validation
- Simple Model Inputs
- Simulation Accuracy with +/- 15%
- All-inclusive Simulation Process
Simulation Process Development

• 1D modeling tools

Use modeling components analytically defined

Dynasty: Caterpillar in-house 1D code

Benchmark for correlation/validation

Modeling process for product groups
Piston Pump Models

• Cat® machine steering pump: a variable displacement piston pump

Model characteristics:
- **GT-SUITE**: use convenient and dedicated predictive templates
- **Dynasty**: combine mechanical with hydraulic components

Pump parasitic load & power loss:
- pumping work
- fluid compressibility
- leakage loss
- friction & viscous losses
- resistance torque
Modeling Approach

• Piston pump intake & discharge flow area profiles
Modeling Approach

- **Piston torque on the swashplate**
 - Support force – torque T_s
 1. $F_s = F_p/cos(\alpha) = P*A/cos(\alpha)$
 2. Torque arm = $r*cos(\theta)/cos(\alpha)$

 $T_s = P*A*r*cos(\theta)/cos(\alpha)^2$
 - Inertia force – torque T_i

 $T_i = -M_p*\omega^2*r^2*tan(\alpha)*cos(\theta)^2/cos(\alpha)$
 - Total torque T from a piston

 $T = \left[P*A*r*cos(\theta) - M_p*\omega^2*r^2*sin(\alpha)*cos(\theta)^2\right]/cos(\alpha)^2$
 - References:
Simulation Validation

- Comparison with GT-SUITE – flow rate & pressure

Different pump speeds
(100% Disp, 80°C Oil, and 2500KPa P_{outlet})

Different pump displacements
(1800RPM, 80°C Oil, and 2500KPa P_{outlet})
Simulation Validation

- Comparison with GT-SUITE – flow rate & pressure (cont’d)

Different pump outlet pressures
(1800RPM, 80°C Oil, and 100% Disp)

Different oil temperatures
(1800RPM, 50% Disp, and 2500KPa P_{outlet})
Simulation Validation

• Correlation with performance test data – efficiency

Volumetric efficiency:
- leakage flow
- fluid compressibility
Simulation Validation

- Comparison with GT-SUITE – variable displacement

Swashplate angle - torques:
- upstroke/destroke actuators (spring force & pressure forces)
- pump pistons (support forces & inertia forces)

Outlet pressure

Volumetric flow rate

Swashplate angle

Total piston torque
Simulation Validation

• Validation by cold start data – pump torque

Forces (Torque & Power):
- input torque force
- inertial force
- spring force
- pressure force
- friction force
- viscous force
Summary

• Simulation process development
 – The simulation process demonstrates promising modeling capabilities with a high accuracy for a variable displacement piston pump
 – GT-SUITE helps us to do model correlation/validation, and create a high confidence in our all-inclusive (any operating conditions & any performance data) simulation process

• Next steps
 – Work with test teams to expand the modeling process for load sensing control cases
 – Gear pump modeling development
Thank You

For more than 80 years, Caterpillar Inc. has been making progress possible and driving positive and sustainable change on every continent. With 2010 sales and revenues of $42.588 billion, Caterpillar is the world’s leading manufacturer of construction and mining equipment, diesel and natural gas engines and industrial gas turbines. The company also is a leading services provider through Caterpillar Financial Services, Caterpillar Remanufacturing Services, Caterpillar Logistics Services and Progress Rail Services. More information is available at www.cat.com.

CAT, CATERPILLAR, their respective logos, “Caterpillar Yellow” and the POWER EDGE trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

©2017 Caterpillar All Rights Reserved