Critical Study of Snorkel Modeling Approaches In GT-POWER For Achieving Better Correlation of Predicted Noise At Air Intake Orifice of Turbocharged Engine

Authors

Diwakar Hiwale, Manager, NVH CAE
Vilas Bijwe, Divisional Manager, NVH CAE
Sameer Muley, Manager, NVH CAE

Engineering Research Centre,
TATA Motors Ltd, Pune, India
Content

- Introduction
- GT-POWER Tool
- GT-POWER Engine Simulation Process Overview
- Air Intake Snorkel Modeling Approaches
- Summary
Major Automotive Noise Sources

- **Engine Noise**
 - Combustion noise
 - Mechanical noise
 - Intake noise

- Aero-dynamic Noise

- HVAC unit Noise

- Exhaust Noise

- Differential/axle Noise

- Fan Noise

- FEAD Noise

- Tire/road Noise

- Shell Noise
 - (Exhaust System)

- Gear box Noise

- Tire/road Noise
GT-POWER Process Overview for Exhaust & Intake Noise Prediction

Input Details
- Engine P-theta
- Valves
- Injector
- Cylinder
- Engine Crank-train
- Turbocharger
- Intake-Exhaust Manifold
- Intake system
- Exhaust system

Step 1: Burn rate
- Instantaneous rate of fuel consumption within the cylinder combustion process

Step 2: CAD Modeling
- Intake Manifold
- Exhaust Manifold
- Intake System
- Exhaust System

Engine Calibration Parameter
- P-Theta
- Volumetric efficiency
- Pressure and temperature
- Fuel flow rate
- Air flow rate
- Turbo-charger
- Temperature variation in Exhaust system

Prediction Capability
- Pressure-Temperature variation
- Pressure Drop across system
- Transmission Loss
- Un-muffled noise
- Muffled Orifice Noise
- Insertion Loss
- SPL at particular RPM
- Back Pressure
CAD modeling in GEM3D / GT-SPACECLAIM

CAD Model → GEM3D Model → GT-POWER 1D Model
Snorkel Modeling Approaches For Achieving Better Correlation of Predicted Intake Noise
GT-POWER Model Set up

Exhaust System

Intake System
Why Such Snorkel can not be modeled as Exactly as CAD?

- Complex 3D shapes must be discretized into 1D components
- Custom shaped perforated section open to environment can not be modeled
Approach 1: Direct Duct Inlet

Air Intake System

Actual Snorkel

Approach 1: GEM3D Snorkel

Air Intake Orifice 2 EO Noise: Measured Vs Predicted
Approach 2: Snorkel Direct Opening

Air Intake System: Snorkel Modeling Approach

Actual Snorkel

Approach 2: GEM3D Snorkel

Air Intake Orifice 2 EO Noise: Measured Vs Predicted

Air Intake Orifice 2 EO Noise Comparison

- Measured 2 EO Noise
- Predicted Approach 1
- Predicted Approach 2

0 dB(A)

2000 2250 2500 2750 3000 3250 3500 3750

Speed (RPM)
Approach 3: Snorkel Tapered Opening

Air Intake System: Snorkel Modeling Approach

Actual Snorkel

Approach 3: GEM3D Snorkel

Air Intake Orifice 2 EO Noise: Measured Vs Predicted

![Graph showing Air Intake Orifice 2 EO Noise Comparison]

- Measured 2 EO Noise
- Predicted Approach 1
- Predicted Approach 2
- Predicted Approach 3

Speed [RPM]

2000 2250 2500 2750 3000 3250 3500 3750

\(\text{dB(A)} \)
Approach 4: Snorkel Direct Opening with Perforated Plate

Air Intake System: Snorkel Modeling Approach

Actual Snorkel

Approach 4: GEM3D Snorkel

Air Intake Orifice 2 EO Noise: Measured Vs Predicted

![Graph showing Air Intake Orifice 2 EO Noise Comparison]
Approach 5: Snorkel Tapered Opening with Perforated Tube

Air Intake System: Snorkel Modeling Approach

Actual Snorkel

Approach 5: GEM3D Snorkel

Air Intake Orifice 2 EO Noise: Measured Vs Predicted

![Air Intake Orifice 2 EO Noise Comparison Graph]
Summery: Air intake Snorkel Modeling Approach

<table>
<thead>
<tr>
<th>Snorkel</th>
<th>Modeling Approach</th>
<th>Accuracy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual CAD</td>
<td>• Ideal snorkel Modeling
• But, can not possible due to modeling limitation</td>
<td></td>
</tr>
<tr>
<td>Approach 1</td>
<td>• Direct duct opening to environment
• Easiest way of modeling</td>
<td></td>
</tr>
<tr>
<td>Approach 2</td>
<td>• Snorkel modeled as Shell
• Short opening C/s pipe</td>
<td></td>
</tr>
<tr>
<td>Approach 3</td>
<td>• Snorkel modeled as Shell
• Short opening C/s tapered pipe
• Tapered inlet C/s equivalent to perforated hole opening</td>
<td></td>
</tr>
<tr>
<td>Approach 4</td>
<td>• Snorkel modeled as Shell
• Short opening C/s pipe
• Perforated plate added</td>
<td></td>
</tr>
<tr>
<td>Approach 5</td>
<td>• Snorkel modeled as Shell
• Short opening C/s tapered pipe
• Tapered inlet C/s equivalent to perforated hole opening
• Perforated plate added</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgment / References

- GT Suite Help
- GT Suite Examples
- GT Suite Manual
- GT Support Team
Thank You