A Near Real-Time GT-POWER Engine Model in Dyno Testing for Residual Gas and Dilution Tolerance Response Modeling

Harley-Davidson Motor Company
Nathan Haugle, Advanced Combustion, Simulation, and Fuel Preparation

GT-USERS CONFERENCE, 14th November 2016
Contents

• Introduction
 – Using a Near Real-Time GT-POWER Model to Supplement Test Cell Measurement for Residual and Dilution Tolerance

• Motivation
 – Combustion system development
 – Calibration process
 – Advanced models and simulation

• Process
 – Test engine measurement
 – Model preparation
 – Implementation

• Results
 – Engine load sweeps
 – Residual mapping

• Conclusions
Motivation

- Combustion Performance
 - High specific output balanced with good light load run quality
 - Strong inner-cycle tuning dynamics
 - Residual concentration measurement
Motivation

- Calibration Support
 - Identify engine out emission sources
 - Immediate insight to fuel control
 - Base calibration table population

- Mapping and FRM development
 - Model output data immediately available with complete data set
 - Combustion quality (COV of IMEP, misfire, ΔSpeed) = f(residual concentration)
 - RSMs (CA50, EGTs, Res) - Optimization routines, FRMs
 - Mean Value Models (cylinder IMEP) - FRMs, plant models (HiL)
Process Overview

- **Engine Test**
 - Crank Angle resolved intake, exhaust, and cylinder pressure
 - System temperatures and pressure
- **1-D gas dynamic model**
 - Detailed gas dynamics
 - Apparent combustion calculation
 - Correlate to previously measured data
 - Prepare “Three Pressure Analysis” – TPA model
- **Data management**
 - Share test cell data to model
 - Execute model
 - Retrieve data
 - Push test cell and model data to database
Process Detail

- Engine Test
 - High speed pressure measurement
 - Manifold pressure measured downstream of throttle
 - Cylinder pressure measured with best practices
 - Exhaust pressure measured downstream of port
 - Low speed test condition measurement
 - Engine speed, load, head temperatures, EGTs, spark timing, lambda, etc.
 - Single values for model inputs
Process Detail

- Test Data Handling, Availability, and Real-Time
 - Cycle count from few to many
 - Buffer fills then creates statistical data and file
 - Model execution immediately after – near real-time
 - Sampling to running file while executing – real-time (N-1?)
 - Without combustion, real-time is easily achieved
Process Detail

- 1-D Model Preparation
 - Detailed / correlated or best practices base model
Process Detail

- 1-D Model Preparation
 - Strip the model beyond the intake and exhaust pressure measurement location
 - Add TPA end environments - iFiles and boundary conditions
 - Ensure robust burn rate calculations through correlated thermal boundaries and heat transfer coefficients
 - Balance gas dynamic detail with execution speed
Process Detail

- 1-D Model Preparation
 - Prepare Model Input
 - External file corresponding to input parameters
 - External file points to iFile name and location
 - Cell to model data manipulation for units and corrections
 - Prepare model output
 - Complete model output is available but time consuming
 - Prepare export template with output of interest
Process Detail

- **Data Handling – Script and Upload**
 - Creates statistical calculation from low speed data
 - Link statistical calculation of low speed data to iFile
 - Starts GT from a command line passing model, parameter file, statistical calculation of low speed data, and path to iFile
 - Starts GT export from a command line passing parameter file, and output file
 - Append GT data to test data file
 - Upload to database
Results
Dilution Tolerance

Residual Concentration
1600 RPM, Load Sweep

- Engine 1 - production cam - combustion OK
- Engine 2 - initial cam - poor combustion
- Engine 2 - intermediate cam - better combustion
- Engine 2 - final cam - good combustion
Results

Residual Concentration Response Surface Modelling

Engine Configuration A

Engine Configuration B
Conclusions

• A process for quick and robust evaluation, optimization, and calibration of a performance combustion system was developed

• Fast running GT-POWER model was prepared for and run in the test cell with each test

• The test conditions, along with steady-state results and crank angle resolved system pressures, are passed directly to the model

• A script within the test cell handles the data transfer, model execution, and completes data upload to a database

• Otherwise difficult to measure data is available at the test cell per run and at the engineers desk for correlation development, optimization and engine calibration
Discussion and Questions

Thank You!