ADVANCED BOOSTING
EU6d Gasoline Engines
Agenda

- Introduction
- Base Engine Configuration
- Target Boosting Concept
- Simulation Study
- Conclusion
Agenda

- Introduction
- Base Engine Configuration
- Target Boosting Concept
- Simulation Study
- Conclusion
Introduction

CO₂ challenge

Market share

CO₂ challenge & boosted gasoline engines
Fuel Economy Oriented Technologies

VCR

- 13:1
- 9.6:1

Multi-links reaching maturity

MILLER

- Intake valve - Otto
- Intake valve - Miller
- Exhaust valve

Part-Load & Full-Load

DILUTION

Cooled EGR

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

Miller as a main stream technology
Honeywell VNT experience

Millions of Diesel VNT

- 1991 Fiat Croma VNT25
- 2015 2-stage VNT GTD12 GTD20

1050°C VNT « Le Mans »

- 2011-13 Audi Sport TR4288RV

- Le Mans 24hrs Victory 2011-14 T3 up to 1050°C

60 Millions Diesel VNT Produced

VNT Gas built on Strong Honeywell VNT Experience
Agenda

- Introduction
- Base Engine Configuration
- Target Boosting Concept
- Simulation Study
- Conclusion
Base Engine Configuration

- 2.0 L gasoline engine
- Direct injection
- Inline 4-cylinder
- 220 kW / 400 Nm at peak
- Compression ratio 9.6
- Twin scroll turbocharger
- Variable intake cam timing
Agenda

- Introduction
- Base Engine Configuration
- Target Boosting Concept
- Simulation Study
- Conclusion
Target Boosting Concept

• Miller engine cycle → increased boost demand
 ➢ Gasoline VNT + optionally external wastegate (part load)
 ➢ High performance/upsized charge air cooling

• Best full load BSFC below 240 g/kWh

• Geometric CR 13:1
Turbine Aerodynamics Developments

Turbine Map Flow

Inertia

Compared to Diesel, Gasoline Aerodynamics:
- +15% Increased max flow
- -15% Lower Inertia

Specific VNT Aero for Gasoline
Agenda

- Introduction
- Base Engine Configuration
- Target Boosting Concept
- Simulation Study
- Conclusion
Simulation Study – *WOT Performance*

BMEP - Brake Mean Effective Pressure

- WG/CR9.6 – Reference
- WG/CR9.6 – Otto cycle
- VNT/CR13 – Miller cycle

Brake Power

Miller ratio

\[M_r = \frac{V_{\text{expansion_displacement}}}{V_{\text{effective_compression_displacement}}} \]

BSFC - Brake Specific Fuel Consumption

7 g/kWh

BSFC benefit through Miller + VNT
Simulation Study – WOT Combustion

- WG/CR9.6 – Reference
- WG/CR9.6 – Otto cycle
- VNT/CR13 – Miller cycle

Average Pressure P1E

Average Total Pressure P1T

Knock Induction Time Integral

Total Turbine Inlet Temperature (T1T)

Miller → higher compression on turbocharger
Compressor Lug Lines

Compressor map

WG/CR9.6 – Otto cycle
VNT/CR13 – Miller cycle

Corrected Mass Flow Rate

Miller ➔ High PRC / PRT ➔ VNT ➔ Lower Mass Flow
Simulation Study – Part Load

BSFC benefit even at part load (fuel economy implication)

BSFC @ 1600 rpm

- 21 g/kWh !
 - WG/CR9.6 – Otto cycle
 - VNT/CR13 – Miller cycle

BSFC @ 5000 rpm

- 28 g/kWh
 - 10 g/kWh
 - 1600rpm
Agenda

- Introduction
- Base Engine Configuration
- Target Boosting Concept
- Simulation Study

Conclusion
Conclusion

• Differentiated **GT-POWER** capabilities built at Honeywell

• Knock modeling vital for Millerisation assessment

• Millerisation realized through EIVC
 - BSFC benefit even at part load (lower pumping losses, higher CR)
 - Driving cycle fuel economy improvement
 - High low end torque enabled by two switchable intake cam profiles

• Air flow demand lower due to improved engine efficiency
 - Compressor downsizing

• Lower exhaust enthalpy demands efficient turbine stage
 - Advantage of VNT technology
Thank you for your attention