Fuel Injector Design Optimization using GT-SUITE

GT Conference 2015
07/12/2015
Aurobbindo L
GT Conference- Fuel Injector Design Optimization

Agenda

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation/Objective</td>
</tr>
<tr>
<td>2</td>
<td>Modeling approach</td>
</tr>
<tr>
<td>3</td>
<td>Simulation and Validation</td>
</tr>
<tr>
<td>4</td>
<td>DOE setup and Simulation</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
</tr>
</tbody>
</table>
GT Conference- Fuel Injector Design Optimization

<table>
<thead>
<tr>
<th></th>
<th>Motivation/Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Modeling approach</td>
</tr>
<tr>
<td>3</td>
<td>Simulation and Validation</td>
</tr>
<tr>
<td>4</td>
<td>DOE setup and Simulation</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Motivation for simulation

Use of simulation in early development phase

- Enable evaluation of new concept before the hardware exists
- Identify the optimal design parameters with given constraints before the hardware development
- Reduce number of prototypes developed
- Reduce actual hardware testing time

Objective:

- To determine the optimal Fuel Injector design parameters to achieve the target fuel flow rate
GT Conference- Fuel Injector Design Optimization

1. Motivation/Objective
2. Modeling approach
3. Simulation and Validation
4. DOE setup and Simulation
5. Summary
GT Conference - Fuel Injector Design Optimization

Modeling approach

Based on Fishbone analysis, the influencing parameters have been identified which would determine the flow rate.

Main requirements of Injector:
- Target Fuel Flow rate
- Spray atomization
- Penetration depth
- Spray shape
- Spray size - SMD

Fuel Flow rate depends on:
- Needle Lift
- Volume b/w Needle & Orifice plate
- Number of Holes
- Hole Size

Flow metering

3D Injector model
Modeling approach Contd.,

- Understand Injector construction from 3D & AutoCAD drawings & Build Injector Model using Hydraulics & Pneumatics Library in GT-SUITE
- Parameterization of model to achieve desired Injection profile
- Achieve pressurized injector flow rate as per injector specifications in the simulation
- Changes in the boundary conditions like supply pressure and observe if the model could capture the flow dynamics
- Match low pressure injection test bench data results with simulation results
- Conduct DoE to achieve the target Fuel flow rate with low pressure
GT Conference- Fuel Injector Design Optimization

1. Motivation/Objective
2. Modeling approach
3. Simulation and Validation
4. DOE setup and Simulation
5. Summary
GT Conference - Fuel Injector Design Optimization

Injector model built in GT-SUITE and its output behavior for pressurized system

Simplification: The electromagnetic circuit is built as a force lookup table.
GT Conference- Fuel Injector Design Optimization

Test bench and simulation results comparison

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>Test bench</th>
<th>Simulation</th>
<th>Test bench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pr</td>
<td>bar</td>
<td>2.7</td>
<td>2.7</td>
<td>3</td>
</tr>
<tr>
<td>Needle Lift</td>
<td>Microns</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>On time</td>
<td>ms</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Static Flow</td>
<td>g/min</td>
<td>109</td>
<td>110</td>
<td>116.9</td>
</tr>
<tr>
<td>Dynamic Flow</td>
<td>mg/Pulse</td>
<td>3.3</td>
<td>3.3</td>
<td>NA</td>
</tr>
</tbody>
</table>

Sensitivity Analysis of 1D Simulation model

Flow rate variation with different operating pressure

Dynamic Flow rate variation with varying On time

Static flow rate variation with varying lift
GT Conference- Fuel Injector Design Optimization

Instantaneous mass & Pressure inside sac Volume for low pressure system

Note: As the duty cycle is increased more fuel flows into the sac volume and gaseous volume fraction decreases and density increases.
Test bench and simulation results comparison for low pressure system

P1 pressure

- Engine speed N1

P2 pressure

- Engine speed N1

- Engine speed N2
GT Conference- Fuel Injector Design Optimization

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation/Objective</td>
</tr>
<tr>
<td>2</td>
<td>Modeling approach</td>
</tr>
<tr>
<td>3</td>
<td>Simulation and Validation</td>
</tr>
<tr>
<td>4</td>
<td>DOE setup and Simulation</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
</tr>
</tbody>
</table>
GT Conference - Fuel Injector Design Optimization

DoE case set up

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Holes</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Hole Dia</td>
<td>mm</td>
<td>0.2</td>
</tr>
<tr>
<td>Sac Volume</td>
<td>mm3</td>
<td>1.18</td>
</tr>
<tr>
<td>Lift</td>
<td>microns</td>
<td>60</td>
</tr>
</tbody>
</table>

- The goal of DoE is to identify the most probable combination of the design parameters, which provide maximum flow
- The available maximum design parameter values are used as boundary condition
- A full factorial DoE type is used for DoE settings
DOE case setup results

Integral of Mass Flow Rate

On time 2.5ms
GT Conference - Fuel Injector Design Optimization

1. Motivation/Objective
2. Modeling approach
3. Simulation and Validation
4. DOE setup and Simulation
5. Summary
Summary

- Sensitivity analysis shows that the model is able to capture the flow dynamics under varying operating conditions.
- The supply pressure is varied during static and dynamic conditions and compared with actual test bench measurements.
- The low pressure system operation is well captured in the simulation and test bench comparison results show a good match.
- DOE analysis provide the best possible combination of the design parameters with given constraints.
- GT 1D hydraulic simulation helps in reducing the number of prototype generated, testing time, cost and effort.
I would like to Thank the following people for their help during this work

- Pradeep R (GS/ESB11-IN) - RBIN
- Shawn Harnish – Gamma Technologies
- Bradford Lynch – Gamma Technologies
Thank You