Evaluation of consumption and performances for aircrafts

T. Wasselin, H. Bourjot

SMA (SAFRAN)
Frankfurt am Main, 26. October 2015
AGENDA

SMA & the SR305-230E engine

Aircrafts modeling

Evaluation of consumption & performances

Conclusions & Perspectives
SMA & THE SR305-230E ENGINE

⇒ SMA (SAFRAN group)
 - Subsidiary of SNECMA, one of the world leader in aircraft & rocket engines
 - ~70 peoples on 3 locations (2 in France, 1 in the USA)
 - Designs, produces and supports gas oil engines for light aviation
 - History
 - 1997 → Joint venture between Socata and Renault Sport F1
 - 2002 → FAA certification for the SR305-230
 - 2005 → SAFRAN becomes 100% shareholder of SMA

⇒ SR305-230E engine
 - Certified in 2011 by EASA and FAA
 - Designed for the general aviation market
 - Main advantages
 - Use of Jet fuels available around the world
 - Fuel costs savings by over 30% compared to gasoline engines
 - No lead emissions at exhaust
 - Selected by Cessna for the Turbo Skylane JT-A
SMA & THE SR305-230E ENGINE

→ SR305-230E main characteristics

- Flat 4 configuration
- Compression ignition (Diesel cycle)
- Swept volume of 5L
- CR of about 15:1
- Direct injection (inline pump, up to 1200bar)
- Air and Oil Cooled
- Turbocharged

- Direct drive
- Single Control Lever (power adjusted by fuel flow)

- Max power of 230hp up to 10 000 ft (ISA conditions)

ISA → standard model of atmosphere (15°C on ground)
ISA+30 → hot conditions
Current tool → excel files
- Evaluation of required power on specific operating points
- Steady-state tool (no dynamic taken into account)
- No consumption evaluation and weight evolution on a full mission

Discussion with GT to build aircraft models in the GT environment
AIRCRAFTS MODELING – ENGINE

➡️ Engine model
- Mapped ICE model
- Addition of two 3D maps for power & consumption
 - Function of altitude, engine speed & « engine load »

➡️ Principe
- Evaluation of maximal available power (with atmo. conditions)
- Comparison with required power coming from aircraft model
- Choice of the minimum of both power
- Evaluation of consumption according to the chosen power

➡️ Mapping of the engine
- GT model of the SR305
- Calibration with tests on ground & in flight
- Extraction of maps for main engine results
AIRCRAFTS MODELING – AIRCRAFT (A/C)

➔ Aircraft model
- Quasi steady-state model
- Atmosphere model (based on ISA)
 - Outside conditions (pressure, temperature…)
- Body → frame and “ghost” road laws (no friction)
- Propeller → fixed engine speed
 - Efficiency map for the propeller

➔ Flight equations
- Same equations for all phases

Aircraft forces
- Lift
- Drag
- Thrust
- Weight

Lift forces
- Cz

Drag forces
- Cx

Powers calculation

Required power
Rotorcraft model

- Same architecture as for the aircraft
- Rotor → fixed engine speed
- Descent phase not modeled
 - Physics too complex for our modeling level
 - Add of stationary phase to compensate

Flight equations

- Different equations according to the considered phase
- Logical flow chart to select the phase
- For each phase, calculation of 3 power components
Pilot model
- 1st step → missions imposed to the aircraft (validated)
 - Aircraft speed and altitude as function of time
 - No adaptation of flight profile due if too low A/C performances
- Simulation still needs a posteriori validation by the user
 - To check if performances results don’t exceed aircraft capabilities
 - Will be useless when step 2 will be implemented

- 2nd step → missions with objectives (in study)
 - Dynamic behavior with adaptation

<table>
<thead>
<tr>
<th>Phase</th>
<th>Objectives</th>
<th>Initial point</th>
<th>Option</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi</td>
<td>Duration</td>
<td>Altitude</td>
<td>-</td>
<td>A/C</td>
</tr>
<tr>
<td>Hovering</td>
<td>Duration</td>
<td>Altitude</td>
<td>IGE/OGE</td>
<td>R/C</td>
</tr>
<tr>
<td>Climb</td>
<td>Final altitude</td>
<td>Altitude</td>
<td>Horizontal speed</td>
<td>A/C & R/C</td>
</tr>
<tr>
<td>Cruise</td>
<td>Duration</td>
<td>Altitude</td>
<td>Horizontal speed</td>
<td>A/C & R/C</td>
</tr>
<tr>
<td>Descent</td>
<td>Final altitude</td>
<td>Altitude</td>
<td>Horizontal speed</td>
<td>A/C</td>
</tr>
<tr>
<td>Winching up</td>
<td>Duration</td>
<td>Altitude</td>
<td>Additional mass</td>
<td>R/C</td>
</tr>
</tbody>
</table>

~ 110s simulation for 1h mission

Mission phases
Selected aircraft → Socata TB-20

- Fuel
 - Jet-A1 (265 kg) or Avgas (242 kg)

- Payload
 - 4 seats in the aircraft (included pilot) → 100 kg each

- Weight hypothesis
 - 1 pilot + % of payload + max fuel (up to MTOW)

MTOW with payload variation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MTOW</td>
<td>1400 kg</td>
</tr>
<tr>
<td>Empty W</td>
<td>900 kg</td>
</tr>
<tr>
<td>Fuel tanks</td>
<td>336 L</td>
</tr>
<tr>
<td>Payload max</td>
<td>300 kg</td>
</tr>
</tbody>
</table>

- Cruise (260 km/h, 10 000 ft)
- Descent (5 m/s)
- Climb (5 m/s)
- Taxi (5 min)
- Rotorcraft mission

- Taxi (5 min)
Simulation results

- Zone A → range available for both engines and all payload conditions
- Zone B → range available for SMA engine with a higher payload than for the competitor engine
- Zone C → range only available for SMA engine

With maximal payload
SMA engine can fly ~600km more than its main competitor (+175%)

With maximal TOW & fuel capacity
SMA engine can fly ~1800km more than its main competitor (+175%)

Maximal range with SMA engine is above 3000km, when its competitor can only reach ~1300km
Selected aircraft → Robinson R44

- **Fuel**
 - Main tank → Jet-A1 (87 kg) or Avgas (80 kg)
 - Add. Tank → Jet-A1 (50 kg) or Avgas (46 kg)

- **Payload**
 - 4 seats in the aircraft (included pilot) → 100 kg each

- **Weight hypothesis**
 - 1 pilot + % of payload + max fuel (up to MTOW)

MTOW: 1135 kg
Empty W: 660 kg
Fuel tanks: 111 L + 64 L
Payload max: 300 kg

Rotorcraft mission:
- Hovering (5 min)
- Cruise (160 km/h, 10 000 ft)
- No descent
- Climb (5 m/s)
Simulation results

- Cruise speed for competitor engine → 210km/h (Robinson data)
- Cruise speed for SMA engine chosen for optimal consumption → 160km/h

Next step → simulate performances with SMA engine and a cruise speed of 210km/h to get a full comparison
CONCLUSIONS & PERSPECTIVES

Development of simulation tools for consumption/performances evaluations on aircrafts

- Excel sheets for operational points (steady-state) → GT models for evaluation on a whole mission (quasi steady-state)
- First validation of the models with comparisons made between SMA engine and the gasoline engine mounted on the aircrafts
 - Aircraft model with a Socata TB-20
 - Rotorcraft model with a Robinson R44
- Tool now available in SMA to help early design and discussions with customers

Perspectives

- Take into account inertia effects
- Refine the weight estimation (taking into account engine weight differences for example)
- Complete the tool to include other items
 - Thermal management
 - Accessories consumption…
- Develop a pilot model which will drive the aircraft through mission objectives (and not only time)
THANKS FOR YOUR ATTENTION

Any question?
ANNEXES
SMA & ITS ENGINE SR305-230E

- Diesel most efficient engine for low and medium power
MODELING ARCHITECTURE

AIRCRAFTS MODELING – PRINCIPLE

- Modeling architecture

Pilot

Atmosphere

Pression, Temperature...

Mission (speed, altitude)

Aircraft

Efficiency

Propeller, Rotor

Required power

Available power

Engine

Performances, Consumption

Available power

Ce document et les informations qu’il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Safran.