

Exhaust system warm-up simulation. A tool to improve exhaust system design.

Exhaust system warm-up simulation. Agenda.

- 1 Motivation
- 2 Introduction to SI engine warm-up simulation
- 3 Heat transfer during catalyst-heating operation
- 4 Relevant effects for warm-up simulation
 - 4.1 Post-oxidation reactions
 - 4.2 Turbulent effects in heat transfer
 - 4.3 Condensation effects
- 5 Conclusion

Exhaust system warm-up simulation. Motivation.

SI engines emit 80% of the total hydrocarbon emissions during the first 30 seconds after engine cold-start.

Hydrocarbon emission reduction potential:

- 1. Engine design and operation parameter (HC emissions during catalyst-heating operation, engine-start strategy, ...)
- 2. Heat losses in the exhaust manifold

 (Air-gap isolated exhaust manifold, close coupled catalytic converter, ...)
- Catalytic converter properties

 (Cell density, precious metal load in wash coat, low thermal capacity brick, ...)

Cost-intensive efforts in 3. might be replaced by an improvement in 2.

Exhaust system design has

- large influence on tail pipe emissions
- high potential in saving exhaust system costs

Exhaust system warm-up simulation. Introduction to SI engine warm-up simulation.

affecting the gas-to-wall heat transfer in the exhaust manifold.

Exhaust system warm-up simulation.

Heat transfer during catalyst-heating operation.

The heat transfer during blow down is responsible for the major heat losses.

Angle [deq]

Increasing distance → decreasing importance of the "blow down" phase.

Warm-up simulation needs to predict heat transfer in the "blow down" phase.

Exhaust system warm-up simulation. Relevant effects for warm-up simulation.

During warm-up of a SI engine exhaust system some **additional effect** should be considered:

1) Post-oxidation in the exhaust flow with retarded ignition timing and secondary air

2) 3-dimensional effects / turbulence not predicted by the default 1-dimensional heat transfer model

3) Condensation of water in the exhaust system

Exhaust system warm-up simulation. Post-oxidation reactions.

Warm-up simulation model with exothermic reactions in the exhaust manifold

Exhaust system warm-up simulation.

Turbulent effects in heat transfer.

Exhaust system warm-up simulation.

Turbulent effects in heat transfer.

New empirical model for the heat transfer correlation during warm-up:

The flow velocity u_{eff} for the heat transfer calculation is modified

$$\begin{aligned} u_{qs}^{n} &= abs(vel_{n}) \\ u_{turb}^{n} &= u_{eff}^{n-1} \cdot (1 - C_{Dis}) \\ u_{eff}^{n} &= max\{u_{qs}^{n}, u_{turb}^{n}\} \end{aligned}$$

C_{Dis} represents some kind of a dissipation of the turbulent exhaust gas velocity

- Slight improvements in exhaust dynamics
 - Additional parameter for heat transfer calculation

Exhaust system warm-up simulation. Condensation effects.

Exhaust system warm-up simulation. Conclusion.

SI engine warm-up simulation with post-oxidation reactions shows an sufficient accuracy for an evaluation of exhaust system configurations

- Evaluation of different exhaust manifold configurations
 (3in1, 6in2in1, 6in1, ...)
- Optimization of exhaust system design parameters
 (pipe diameter, length, ...)
- Influences of pipe properties on warm-up
 (wall thickness, LSI, ...)
- Warm-up simulation of exhaust systems assists in the early exhaust system design process
- No replacement of detailed 3-dimensional exhaust system investigation

Exhaust system warm-up simulation.
A tool to improve exhaust system design.

Thank you for your attention!