

GT SUITE for cooling circuit & engine heat balance Hans-Carsten Göttsche-Götze

The engine company.

Deutz Applications for Diesel engines

GT-SUITE for cooling circuit **&**5.11.2009 engine heat balance

Engine spec with key components from customer

Emission state	Tier4f					
Rated Power [HP] @ 2.200 rpm	50	60	70	80	90	100
Rated Power [kW] @ 2.200 rpm	37,3	44,7	52,5	59,7	67,1	74,6
Peak Torque [Nm] @ 1.500 rpm	210	252	294	336	378	406
Torque [Nm] @ 1.000 rpm	176	213	249	285	320	356
Torque Rise [%]	31	30	30	30	30	25
FIE common rail	HEE A	HE B		H <u>ala</u>	H <u>ar</u> A	H <u>R</u> P
externally cooled EGR						
charge air cooler		ſſ		ſ	ſſ	
turbo charger						
dual stage turbo charger						
EAT	Doc	Doc	DOC	SCR CU Adeka*	BOC POC	SCR CU Addax*

Cooling system development

Customer data to Deutz Engine spec Vehicle package **Operation limits Data to Customer** Heat Rejection Coolant flow Charge Air flow

Deutz Cooling Team Heat rejection, Cooler size, coolant flow Thermostat setting System configuration

Cooling components Diameters, Roughness Maps of pump, hx, Fan Thermostat valve curve Pressure losses

Use of GT Suite MP

Development structure

Engine coolant circuit

Measure requirements for coolant system calculation

Known Δp , flow

flow

Development structure

CFD of difficult geometries

Result: pressure resistance

Example: full circuit w/o heat exchangers

Development structure

Heat Balance Schematic

Heat balance calc for full circuit

Principle:

- Q_fuel = Power + Q_Exhaust + Q_Coolant + Q_CAC + Q_amb = BSFC x Power x Fuel Heat/3600000
 - Q_Exhaust = f(heat cap Exh, mass flow, Temperature after Turbine)
 - Q_CAC = f(heat cap Air, mass flow, Temperature after compressor)
 - $Q_{amb} \sim 4\%Q_{fuel}$

Q_Coolant = Q_Engine + Q_oil + Q_EGR

- Q_EGR = f(heat cap Exh_EGR, mass flow, Temp diff over EGR cooler) EGR mass flow = f(EGR rate, air mass flow)
- Q_Oil = f(heat cap, mass flow, Temp diff over oil cooler)

Measure requirements for heat balance

Condition with and w/o EGR

Calculation of heat rejection with GT controls

Map generation with XYZ points

Example: charge air flow over speed and BMEP

Full cycle with heat exchangers

Oil cicuit, EGR flow, CAC flow, Cooling Air flow

Full cycle with heat exchangers Detail: Oil module

Full cycle with heat exchangers Detail: Cooling pack

Air side of water circuit

The engine company. **DEUTZ**

Development structure

Split coupling with GT Power: model 4cyl-2V

GT-SUITE for cooling circuit &5.11.2009 engine heat balance

Result of coupling with GT Power

GT-SUITE for cooling circuit &5.11.2009 engine heat balance

Cooling system deveopment

Customer data to Deutz Engine spec Vehicle package **Operation limits Data to Customer** Heat Rejection Coolant flow Charge Air flow

Deutz Cooling Heat rejection Hx size, ATB, coolant flow Thermostat setting System configuration

Cooling components Diameters, Roughness Maps of pump, hx, Fan Thermostat valve curve Pressure losses

Use of GT Suite MP

Vielen Dank

The engine company.